中国新冠疫情数据可视化

中国新冠疫情数据可视化,第1张

文章目录 一、结果及源码展示二、项目准备1、第三方库2、知识点概况3、推荐视频 三、数据获取四、数据库交互五、绘制前端页面六、Web程序开发七、未来可期

一、结果及源码展示


自己做的这个可视化比较朴素,简单分为七个部分:

全国累计趋势(包括累计确诊、累计治愈、累计死亡)全国每日确诊、治愈情况中间比较明显的四个数据(累计确诊、每日新增、累计治愈、累计死亡)中国疫情地图(颜色深度表示每日新增情况)省份或直辖市每日新增数量前五江苏省各城市现有的确诊人数

源码如下:https://github.com/Polaris119/Epidemic-visualization可以给个star嘛

说真的,自己花了四五天的时间,第一次感觉一个项目能用到这么多知识,学习的过程也遇到了很多的困难,尤其是前端方面的知识,以前接触的非常少。最后慢慢跑完所有的数据后,真的非常开心。

二、项目准备 1、第三方库 requestspymysqlflask

可根据自己情况,酌情安装。

2、知识点概况 htmlcssjavascriptjQuerypythonrequestsmysqlpymysqljsonajaxflaskecharts 3、推荐视频

像我一样的小白,可以参考这个视频,结合自身,可以更快地进入项目。

可参考视频:传送门

注意:这个视频中有一些不对的地方,稍微注意下就可以解决,不要全按照视频来哦

三、数据获取

关于新冠疫情的数据非常多,可自行寻找。

通过检查抓包,可以轻松发现数据,以json的形式进行存储的。

需要获取的数据如下:

全国今日新增、累计确诊、治愈人数、死亡人数每个省份的每个城市今日新增、累计确诊、治愈人数、死亡人数全国历史累计确诊、疑似、治愈、死亡人数全国历史每日累计确诊、疑似、治愈、死亡人数

部分代码如下:

详细可见源码: https://github.com/Polaris119/Epidemic-visualization

# 获取当日数据
def get_now(data):
    now = []
    data_time = str(data['diseaseh5Shelf']['lastUpdateTime'])  # 数据更新时间
    data_all = data['diseaseh5Shelf']['areaTree'][0]
    data_province_s = data['diseaseh5Shelf']['areaTree'][0]['children']

    # 获取全国今日新增、累计确诊、治愈人数、死亡人数
    confirms = data_all['total']['confirm']
    confirms_add = data_all['today']['confirm']
    heals = data_all['total']['heal']
    deads = data_all['total']['dead']

    # 获取每个省份的每个城市今日新增、累计确诊、治愈人数、死亡人数
    for data_province in data_province_s:
        province = data_province['name']  # 省份
        for data_city in data_province['children']:
            city = data_city['name']  # 城市
            confirm = data_city['total']['confirm']  # 确诊
            confirm_add = data_city['today']['confirm']  # 新增
            heal = data_city['total']['heal']  # 治愈
            dead = data_city['total']['dead']  # 死亡
            now.append((data_time, province, city, confirm_add, confirm, heal, dead))

    return confirms, confirms_add, heals, deads, now


# 获取历史数据
def get_past(data):
    past = {}
    for data_day in data:
        data_time = data_day['date']  # 获取最原始的时间
        time_deal = time.strptime(data_time, '%m.%d')  # 根据指定的格式把一个时间字符串解析为时间元组
        date = time.strftime('%m-%d', time_deal)  # 重新组成新的时间字符串
        past[date] = {
            'confirm': data_day['confirm'],  # 确诊
            'suspect': data_day['suspect'],  # 疑似
            'heal': data_day['heal'],  # 治愈
            'dead': data_day['dead']  # 死亡
        }

    return past

四、数据库交互

对于数据库的相关知识,小白可参考我之前写的两篇文章:
【MySQL安装】MySQL的安装及环境配置
【MySQL语句】MySQL基础语句


在开始之前,需要创建一个数据库,我这里创建的是covid

接着,需要连接数据库,以我的为例:

import pymysql


def mysql():
    db = pymysql.connect(host='localhost', user='root', password='填写自己的密码', database='covid', charset='utf8')
    cur = db.cursor()
    return db, cur

成功连接之后,就可以进行存取数据了。

插入全国今日新增、累计确诊、治愈人数、死亡数据为例:

# 写入当日数据
def insert_now(now):
    db, cur = mysql()
    try:
        cur.execute("DROP TABLE IF EXISTS 当日数据")
        # 写创建表的sql语句
        set_sql_now = "create table 当日数据(时间 varchar(100),省份 varchar(50),城市 varchar(50),新增确诊 int(11)," \
                      "确诊人数 int(11),治愈人数 int(11),死亡人数 int(11))ENGINE=InnoDB DEFAULT CHARSET=utf8"
        # 执行sql语句
        cur.execute(set_sql_now)
        # 保存
        db.commit()
        # 写入数据库
        save_sql_now = "insert into 当日数据 values(%s,%s,%s,%s,%s,%s,%s)"
        cur.executemany(save_sql_now, now)  # now位置必须是个列表,列表里面的元素是数组
        db.commit()
        print('当日数据写入成功')
    except Exception as e:
        print('当日数据写入失败原因:%s' % e)
五、绘制前端页面

主要用到了Echarts提供的模板。ECharts 是一个使用 JavaScript 实现的开源可视化库,涵盖各行业图表,可免费使用。

Echarts官网如下:https://echarts.apache.org/zh/index.html

具体的使用可以到官方文档查看:https://echarts.apache.org/zh/api.html#echarts

六、Web程序开发

Flask是一个使用 Python编写的轻量级Web应用框架。其WSGl( Python Web Server Gateway Interface)工具包采用 Werkzeug,模板引擎则使用 Jinja2,是目前十分流行的Web框架。

使用pycharm创建一个flask项目,会自动帮我们生成两个文件夹【templates】【static】和一个python文件【app.py】,我们需要将写好的HTML文件放在【templates】目录下,CSS和JS放在【static】目录下。

数据的传输可以使用Ajax。Ajax是Asynchronous Javascript and XML的简称,通过Ajax向服务器发送请求,接收服务器返回的json数据,然后使用 Javascript修改网页,来实现页面局部数据更新。

基本格式如下:

$.ajax({
    type:"post",     //请求类型
    url:"/目标路由",  //请求地址
    data:{},         //数据
    datatype:"json",
    success:function (data) {
        //请求成功的回调函数,data是返回的数据
    },
    error:function () {
        //请求失败时执行
    }
}
七、未来可期

文章到这里就要结束了,但故事还没有结局

如果本文对你有帮助,记得点个赞👍哟,也是对作者最大的鼓励🙇‍♂️。

如有不足之处可以在评论区👇多多指正,我会在看到的第一时间进行修正

作者:爱打瞌睡的CV君
CSDN:https://blog.csdn.net/qq_44921056
本文仅用于交流学习,未经作者允许,禁止转载,更勿做其他用途,违者必究。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/web/1323033.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-06-12
下一篇 2022-06-12

发表评论

登录后才能评论

评论列表(0条)

保存