JS代码在运行时,有两种运行环境。一是在浏览器中,二是在node中。由于JS线程是单线程,在运行JS代码时,可能会遇到比较耗时的 *** 作,比如setTimeout,或者是发送网络请求等,又由于JS线程是单线程,如果在解析耗时的代码时候,停在了这里,那执行代码的性能将是比较低的。为了解决此问题,在浏览器、node环境下,其实是有事件循环机制的。
一、浏览器的事件循环 1、浏览器的事件循环JS线程执行代码时候,遇到比较耗时的 *** 作时,将这些 *** 作交给浏览器去处理,然后这些 *** 作会根据不同的种类放进微任务队列或者宏任务队列,宏任务队列和微任务队列都不为空的时候,只有等微任务队列为空,即微任务队列里面的事件全部都执行完之后,才会再去让宏任务队列中的事件出栈,之后交由JS线程去处理,执行代码。
事件循环大概就是如图所示的流程:
其实,在浏览器拿到那些有些不能同步处理的事件的时候,有的会加入宏任务队列,有的会加入微任务队列,那么一般我们如何区分呢?
一般情况下:加入宏任务队列和微任务队列的事件如下:
宏任务队列(macrotask queue):ajax、setTimeout、setInterval、DOM监听、UI Rendering等
微任务队列(microtask queue):Promise的then回调、 Mutation Observer API、queueMicrotask()。
那么这些事件的执行顺序是怎么样子的呢?
首先,有一个原则,宏任务队列里面的事件,要执行的话,一定是在确保微任务队列为空的情况下,即微任务队列里面的事件全部执行完的情况。其次,main script里面的内容是最先执行的,由此,可以得到执行顺序为:main script > 微任务队列里面的事件 > 宏任务里面的事件。
题目如下:
setTimeout(function () {
console.log("setTimeout1");
new Promise(function (resolve) {
resolve();
}).then(function () {
new Promise(function (resolve) {
resolve();
}).then(function () {
console.log("then4");
});
console.log("then2");
});
});
new Promise(function (resolve) {
console.log("promise1");
resolve();
}).then(function () {
console.log("then1");
});
setTimeout(function () {
console.log("setTimeout2");
});
console.log(2);
queueMicrotask(() => {
console.log("queueMicrotask1")
});
new Promise(function (resolve) {
resolve();
}).then(function () {
console.log("then3");
});
// promise1
// 2
// then1
// queueMicrotask1
// then3
// setTimeout1
// then2
// then4
// setTimeout2
分析如下:
在第一个事件循环里面,main script、宏任务、微任务里面的事件如下:
在判断加入宏任务队列还是微任务队列时候,遵循如下原则:
宏任务队列(macrotask queue):ajax、setTimeout、setInterval、DOM监听、UI Rendering等
微任务队列(microtask queue):Promise的then回调、 Mutation Observer
API、queueMicrotask()。
按照这个原则,第一轮事件循环里面的事件如下:
先执行main script、然后微任务队列里面的,最后是宏任务队列里面的
// promise1
// 2
// then1
// queueMicrotask1
// then3
之后执行setTimeout1的宏任务,此时第二轮事件循环里面的内容如下:
第二轮事件循环执行内容如下:
// setTimeout1
// then2
// then4
// setTimeout2
综上:最后执行结果为:
// promise1
// 2
// then1
// queueMicrotask1
// then3
// setTimeout1
// then2
// then4
// setTimeout2
4、面试题二
题目如下:
// async function bar() {
// console.log("22222")
// return new Promise((resolve) => {
// resolve()
// })
// }
// async function foo() {
// console.log("111111")
// await bar()
// console.log("33333")
// }
// foo()
// console.log("444444")
async function async1 () {
console.log('async1 start')
await async2();
console.log('async1 end')
}
async function async2 () {
console.log('async2')
}
console.log('script start')
setTimeout(function () {
console.log('setTimeout')
}, 0)
async1();
new Promise (function (resolve) {
console.log('promise1')
resolve();
}).then (function () {
console.log('promise2')
})
console.log('script end')
// script start
// async1 start
// async2
// promise1
// script end
// async1 end
// promise2
// setTimeout
第一轮事件循环里面的事件如下:
然后按照顺序执行,最后结果如下:
// script start
// async1 start
// async2
// promise1
// script end
// async1 end
// promise2
// setTimeout
二、node的事件循环
1、node的事件循环
浏览器的事件循环是是根据HTML5定义的规范来实现的,不同的浏览器可能会有不同的实现,而Node中是由libuv实现的。
首先我们看一下node的架构图:
我们可以从图中大致看出,事件循环是在libuv中实现的,libuv主要维护的是一个事件循环(Event Loop)和 线程池(worker threads)。libuv是一个多平台的专注于异步IO的库,它最初是为Node开发的,但是现在也被使用到Luvit、Julia、pyuv等其
他地方;
EventLoop负责调用系统的一些其他 *** 作:文件的IO、Network、child-processes等
由图可以看出,事件循环就像是一个桥梁,是连接着应用程序的JavaScript(左边部分)和系统调用(右边线程池部分)之间的通道:
无论是我们的文件IO、数据库、网络IO、定时器、子进程,在完成对应的 *** 作后,都会将对应的结果和回调函数放到事件循环(任务队列)中;
事件循环会不断的从任务队列中取出对应的事件(回调函数)来执行;
但是一次完整的事件循环Tick分成很多个阶段:
node中也有微任务和宏任务,执行的原则和在浏览器中一样,是先执行微任务,然后再执行宏任务,但是对于宏任务来说,是按照上图从上到下的顺序执行的。
具体对应的常见事件的执行顺序如下;
在微任务队列中:
next tick queue:process.nextTick;other queue:Promise的then回调、queueMicrotask;(是按照从上往下的事件顺序执行)
在宏任务队列:
timer queue:setTimeout、setInterval;poll queue:IO事件;check queue:setImmediate;close queue:close事件(同样是按照从上往下的事件顺序执行)
所以,综上所述,在每一次事件循环的tick中,会按照如下顺序来执行代码:
next tick microtask queue;
other microtask queue;
timer queue;
poll queue;
check queue;
close queue
当然,main script 依旧是最先执行的,只有main script执行结束后,才会按照上述顺序来执行代码。
3、面试题一async function async1() {
console.log('async1 start')
await async2()
console.log('async1 end')
}
async function async2() {
console.log('async2')
}
console.log('script start')
setTimeout(function () {
console.log('setTimeout0')
}, 0)
setTimeout(function () {
console.log('setTimeout2')
}, 300)
setImmediate(() => console.log('setImmediate'));
process.nextTick(() => console.log('nextTick1'));
async1();
process.nextTick(() => console.log('nextTick2'));
new Promise(function (resolve) {
console.log('promise1')
resolve();
console.log('promise2')
}).then(function () {
console.log('promise3')
})
console.log('script end')
// script start
// async1 start
// async2
// promise1
// promise2
// script end
// nexttick1
// nexttick2
// async1 end
// promise3
// settimetout0
// setImmediate
// setTimeout2
第一轮事件循环里面的事件如下:
按照顺序自左向右执行,3s后执行setTimeout2,
最后的结果是:
// script start
// async1 start
// async2
// promise1
// promise2
// script end
// nexttick1
// nexttick2
// async1 end
// promise3
// settimetout0
// setImmediate
// setTimeout2
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)