大数据怎么收集

大数据怎么收集,第1张

数据分析处理解决方案

方案阐述

每天,中国网民通过人和人的互动,人和平台的互动,平台与平台的互动,实时生产海量数据。这些数据汇聚在一起,就能够获取到网民当下的情绪、行为、关注点和兴趣点、归属地、移动路径、社会关系链等一系列有价值的信息。

数亿网民实时留下的痕迹,可以真实反映当下的世界。微观层面,我们可以看到个体们在想什么,在干什么,及时发现舆情的弱信号。宏观层面,我们可以看到当下的中国正在发生什么,将要发生什么,以及为什么?借此可以观察舆情的整体态势,洞若观火。

原本分散、孤立的信息通过分析、挖掘具有了关联性,激发了智慧感知,感知用户真实的态度和需求,辅助政府在智慧城市,企业在品牌传播、产品口碑、营销分析等方面的工作。

所谓未雨绸缪,防患于未然,最好的舆情应对处置莫过于让舆情事件不发生。除了及时发现问题,大数据还可以帮我们预测未来。具体到舆情服务,舆情工作人员除了对舆情个案进行数据采集、数据分析之外,还可以通过大数据不断增强关联舆情信息的分析和预测,把服务的重点从单纯的收集有效数据向对舆情的深入研判拓展,通过对同类型舆情事件历史数据,及影响舆情演进变化的其他因素进行大数据分析,提炼出相关舆情的规律和特点。

大数据时代的舆情管理不再局限于危机解决,而是梳理出危机可能产生的各种条件和因素,以及从负面信息转化成舆情事件的关键节点和衡量指标,增强我们对同类型舆情事件的认知和理解,帮助我们更加精准的预测未来。

用大数据引领创新管理。无论是政府的公共事务管理还是企业的管理决策都要用数据说话。政府部门在出台社会规范和政策时,采用大数据进行分析,可以避免个人意志带来的主观性、片面性和局限性,可以减少因缺少数据支撑而带来的偏差,降低决策风险。通过大数据挖掘和分析技术,可以有针对性地解决社会治理难题;针对不同社会细分人群,提供精细化的服务和管理。政府和企业应建立数据库资源的共享和开放利用机制,打破部门间的“信息孤岛”,加强互动反馈。通过搭建关联领域的数据库、舆情基础数据库等,充分整合外部互联网数据和用户自身的业务数据,通过数据的融合,进行多维数据的关联分析,进而完善决策流程,使数据驱动的社会决策与科学治理常态化,这是大数据时代舆情管理在服务上的延伸。

   解决关键

如何能够快速的找到所需信息,采集是大数据价值挖掘最重要的一环,其后的集成、分析、管理都构建于采集的基础,多瑞科舆情数据分析站的采集子系统和分析子系统可以归类热点话题列表、发贴数量、评论数量、作者个数、敏感话题列表自动摘要、自动关键词抽取、各类别趋势图表;在新闻类报表识别分析归类: 标题、出处、发布时间、内容、点击次数、评论人、评论内容、评论数量等;在论坛类报表识别分析归类: 帖子的标题、发言人、发布时间、内容、回帖内容、回帖数量等。

解决方案  

多瑞科舆情数据分析站系统拥有自建独立的大数据中心,服务器集中采集对新闻、论坛、微博等多种类型互联网数据进行724小时不间断实时采集,具备上千亿数据量的数据索引、挖掘分析和存储能力,支撑政府、企业、媒体、金融、公安等多行业用户的舆情分析云服务。因此多瑞科舆情数据分析站系统在这方面有着天然优势,也是解决信息数量和信息(有价值的)获取效率之间矛盾的唯一途径,系统利用各种数据挖掘技术将产生人工无法替代的效果,为市场调研工作节省巨大的人力经费开支。

实施收益  

多瑞科舆情数据分析站系统可通过对大数据实时监测、跟踪研究对象在互联网上产生的海量行为数据,进行挖掘分析,揭示出规律性的东西,提出研究结论和对策。

系统实施  

系统主要应用于负责信息管理的相关部门。由于互联网的复杂性,多瑞科网络舆情监测系统实施起来需要客户的配合。

1、打开微信,然后点击手机屏幕右上角的加号按钮,点击添加朋友。

2、选择公众号,其次输入“海鹰数据”,点击关注。

3、接下来需要在关注之后进入公众号,点击左下角“报告查询”,如下图所示。

4、然后输入个人姓名,手机号码以及,身份z号码就可以查看了近1500项个人数据了,如下图所示。

1基于历史的MBR分析

基于历史(Memory-Based Reasoning)的MBR分析方法最主要的概念是用已知的案例(case)来预测未来案例的一些属性(attribute),通常找寻最相似的案例来做比较。

MBR中有两个主要的要素,分别为距离函数(distance function)与结合函数(combination function)。距离函数的用意在找出最相似的案例;结合函数则将相似案例的属性结合起来,以供预测之用。

MBR的优点是它容许各种型态的数据,这些数据不需服从某些假设。另一个优点是其具备学习能力,它能藉由旧案例的学习来获取关于新案例的知识。较令人诟病的是它需要大量的历史数据,有足够 的历史数据方能做良好的预测。此外记忆基础推理法在处理上亦较为费时,不易发现最佳的距离函数与结合函数。其可应用的范围包括欺骗行为的侦测、客户反应预测、医学诊疗、反应的归类等方面。

2购物篮分析

购物篮分析(Market Basket Analysis)最主要的目的在于找出什么样的东西应该放在一起商业上的应用在藉由顾客的购买行为来了解是什么样的顾客以及这些顾客为什么买这些产品, 找出相关的联想(association)规则,企业藉由这些规则的挖掘获得利益与建立竞争优势。举例来说,零售店可藉由此分析改变置物架上的商品排列或是设计 吸引客户的商业套餐等等。

购物篮分析基本运作过程包含下列三点:

1 选择正确的品项:这里所指的正确乃是针对企业体而言,必须要在数以百计、千计品项中选择出真正有用的品项出来。

2 经由对共同发生矩阵(co-occurrence matrix)的探讨挖掘出联想规则。

3 克服实际上的限制:所选择的品项愈多,计算所耗费的资源与时间愈久(呈现指数递增),此时必须运用一些技术以降低资源与时间的损耗。

购物篮分析技术可以应用在下列问题上:针对xyk购物,能够预测未来顾客可能购买什么。对于电信与金融服务业而言,经由购物篮分析能够设计不同的服务组合以扩大利润。保险业能藉由购物篮分析侦测出可能不寻常的投保组合并作预防。对病人而言,在疗程的组合上,购物篮分析能作为是否这些疗程组合会导致并发症的判断依据。

3决策树

决策树(Decision Trees)在解决归类与预测上有着极强的能力,它以法则的方式表达,而这些法则则以一连串的问题表示出来,经由不断询问问题最终能导出所需的结果。典型的决策树顶端是一个树根,底部有许多的树叶,它将纪录分解成不同的子集,每个子集中的字段可能都包含一个简单的法则。此外,决策树可能有着不同的外型,例如二元 树、三元树或混和的决策树型态。

4遗传算法

遗传算法(Genetic Algorithm)学习细胞演化的过程,细胞间可经由不断的选择、复制、交配、突变产生更佳的新细胞。基因算法的运作方式也很类似,它必须预先建立好一个模式,再经由一连串类似产生新细胞过程的运作,利用适合函数(fitness function)决定所产生的后代是否与这个模式吻合,最后仅有最吻合的结果能够存活,这个程序一直运作直到此函数收敛到最佳解。基因算法在群集 (cluster)问题上有不错的表现,一般可用来辅助记忆基础推理法与类神经网络的应用。

5聚类分析

聚类分析(Cluster Detection)这个技术涵盖范围相当广泛,包含基因算法、类神经网络、统计学中的群集分析都有这个功能。它的目标为找出数据中以前未知的相似群体,在许许多多的分析中,刚开始都运用到群集侦测技术,以作为研究的开端。

6连接分析

连接分析(Link Analysis)是以数学中之图形理论(graph theory)为基础,藉由记录之间的关系发展出一个模式,它是以关系为主体,由人与人、物与物或是人与物的关系发展出相当多的应用。例如电信服务业可藉连结分析收集到顾客使用电话的时间与频率,进而推断顾客使用偏好为何,提出有利于公司的方案。除了电信业之外,愈来愈多的营销业者亦利用连结分析做有利于 企业的研究。

7OLAP分析

严格说起来,OLAP(On-Line Analytic Processing;OLAP)分析并不算特别的一个数据挖掘技术,但是透过在线分析处理工具,使用者能更清楚的了解数据所隐藏的潜在意涵。如同一些视觉处理技术一般,透过图表或图形等方式显现,对一般人而言,感觉会更友善。这样的工具亦能辅助将数据转变成信息的目标。

8神经网络

神经网络是以重复学习的方法,将一串例子交与学习,使其归纳出一足以区分的样式。若面对新的例证,神经网络即可根据其过去学习的成果归纳后,推导出新的结果,乃属于机器学习的一种。数据挖掘的相关问题也可采类神经学习的方式,其学习效果十分正确并可做预测功能。

9判别分析

当所遭遇问题它的因变量为定性(categorical),而自变量(预测变量)为定量(metric)时,判别分析为一非常适当之技术,通常应用在解决分类的问题上面。若因变量由两个群体所构成,称之为双群体 —判别分析 (Two-Group Discriminant Analysis);若由多个群体构成,则称之为多元判别分析(Multiple Discriminant Analysis;MDA)。

a 找出预测变量的线性组合,使组间变异相对于组内变异的比值为最大,而每一个线性组合与先前已经获得的线性组合均不相关。

b 检定各组的重心是否有差异。

c 找出哪些预测变量具有最大的区别能力。

d 根据新受试者的预测变量数值,将该受试者指派到某一群体。

10逻辑回归分析

当判别分析中群体不符合正态分布假设时,逻辑回归分析是一个很好的替代方法。逻辑回归分析并非预测事件(event)是否发生,而是预测该事件的机率。它将自变量与因变量的关系假定是S行的形状,当自变量很小时,机率值接近为零;当自变量值慢慢增加时,机率值沿着曲线增加,增加到一定程度时,曲线协 率开始减小,故机率值介于0与1之间。

方式1、外部购买数据

有很多公司或者平台是专门做数据收集和分析的,企业会直接从那里购买数据或者相关服务给数据分析师,这是一种常见的获取数据的方式之一。

方式2、网络爬取数据

除了购买数据以外,数据分析师还可以通过网络爬虫从网络上爬取数据。比如大家可以利用网络爬虫爬取一些需要的数据,再将数据存储称为表格的形式。

方式3、免费开源数据

外部购买数据要花费一定的资金,网络爬取对技术又有一定的要求,有没有什么办法能又省力又省钱的采集数据呢当然有,互联网上有一些“开放数据”来源,如政府机构、非营利组织和企业会免费提供一些数据,根据需求你可以免费下载。

方式4、企业内部数据

了解了企业外部数据的来源,其实企业内部本身就会产生很多数据提供给我们分析,我们一起来了解一下吧。前面说了,内部数据通常包含销售数据、考勤数据、财务数据等。

关于数据分析中数据获取的方式有哪些,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

以上就是关于大数据怎么收集全部的内容,包括:大数据怎么收集、个人大数据怎么查、大数据挖掘常用的方法有哪些等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/web/9343674.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-27
下一篇 2023-04-27

发表评论

登录后才能评论

评论列表(0条)

保存