能选择三种:
1 ActiveMQ/ApolloMQ
优点:牌消息队列使用Java语言编写JMS支持采用线程并发资源消耗比较主语言Java重点考虑
缺点:由于历史悠久历史包袱较版本更新缓慢集群模式需要依赖Zookeeper实现新架构产品命名Apollo号称代ActiveMQ目前案例较少
2 RocketMQ/Kafka
优点:专海量消息传递打造主张使用拉模式集群、HA、负载均衡支持说句适合适合看没量
缺点:所谓鱼熊掌兼放弃些消息间件灵性使用场景较窄需关注业务模式否契合否则山寨变相使用别扭除外RocketMQ没NET客户端用RocketMQ身名门使用者态较毕竟消息量能达种体量公司直接购买阿云消息服务Kafka态完善其代码用Scala语言写靠性比RocketMQ低些
3 RabbitMQ
优点:态丰富使用者众前面踩坑AMQP协议领导实现支持种场景淘宝MySQL集群内部使用进行通讯OpenStack源云平台通信组件先金融行业运用
缺点:Erlang代码Hold住 虽Erlang集群化RabbitMQ高用面做起特别应手别相信广告
如果您是一名企业架构师,您可能听说过微服务架构,并使用过它。虽然您过去可能使用REST作为服务通信层,但是越来越多的项目正在转向事件驱动的体系结构。让我们深入了解这种流行架构的优缺点、它所包含的一些关键设计选择以及常见的反模式。
什么是事件驱动的微服务体系结构
在事件驱动的体系结构中,当服务执行其他服务可能感兴趣的某些工作时,该服务将生成一个事件—执行 *** 作的记录。其他服务使用这些事件,以便它们能够执行由于该事件而需要的任何自己的任务。与REST不同,创建请求的服务不需要知道使用请求的服务的详细信息。
这里有一个简单的例子:当一个订单被放置在一个电子商务网站,一个单一的“订单放置”事件产生,然后被几个微服务消费:
1order服务,它可以向数据库写入一个order记录。
2客户服务,它可以创建客户记录。
3支付服务,它可以处理支付。
事件可以以多种方式发布。例如,可以将它们发布到保证将事件交付给适当使用者的队列中,也可以将它们发布到发布事件并允许访问所有相关方的“发布/订阅”模型流中。在这两种情况下,生产者发布事件,消费者接收该事件,并做出相应的反应。注意,在某些情况下,这两个角色还可以称为发布者(生产者)和订阅者(消费者)。
为什么使用事件驱动的体系结构
与REST相比,事件驱动架构提供了以下几个优点:
异步——基于事件的架构是异步的,没有阻塞。这使得资源可以在他们的工作单元完成后自由地转移到下一个任务,而不用担心之前发生了什么或者接下来会发生什么。它们还允许对事件进行排队或缓冲,从而防止使用者向生产者施加压力或阻塞它们。
•松耦合——服务不需要(也不应该)知道或依赖于其他服务。在使用事件时,服务独立运行,不了解其他服务,包括其实现细节和传输协议。事件模型下的服务可以独立地、更容易地更新、测试和部署。
•易于扩展——由于服务在事件驱动的体系结构下解耦,而且服务通常只执行一项任务,因此跟踪特定服务的瓶颈,并对该服务(且仅对该服务)进行扩展变得很容易。
•恢复支持——带有队列的事件驱动架构可以通过“重播”过去的事件来恢复丢失的工作。当用户需要恢复时,这对于防止数据丢失非常有用。
当然,事件驱动的架构也有缺点。通过分离紧密耦合时可能更简单的关注点,它们很容易过度设计;它们可能需要大量的前期投资;而且常常导致基础设施、服务契约或模式、多语言构建系统和依赖关系图的额外复杂性。
也许最大的缺点和挑战是数据和事务管理。由于事件驱动模型的异步性,它们必须小心处理服务之间不一致的数据、不兼容的版本、监视重复的事件,并且通常不支持ACID事务,而不支持最终的一致性,因为后者更难以跟踪或调试。
即使有这些缺点,事件驱动的体系结构通常也是企业级微服务系统的更好选择。主要的优点是可伸缩的、松散耦合的、开发人员 *** 作友好的。
何时使用REST
然而,有时REST/web接口可能仍然更可取:
•您需要一个异步请求/应答接口。
•您需要对强事务的支持。
•您的API对公众可用。
•您的项目很小(REST的设置和部署要简单得多)。
您最重要的设计选择—消息传递框架
一旦决定了事件驱动的体系结构,就该选择事件框架了。事件生成和使用的方式是系统中的一个关键因素。目前已有数十种经过验证的框架和选择,选择正确的框架需要时间和研究。
分俩个大类: 消息处理或流处理。
消息处理
在传统的消息处理中,组件创建消息,然后将其发送到特定的(通常是单个的)目的地。一直处于空闲状态并等待的接收组件接收消息并相应地执行 *** 作。通常,当消息到达时,接收组件执行单个流程。然后,删除消息。
消息处理体系结构的一个典型例子是消息队列。尽管大多数较新的项目使用流处理(如下所述),但是使用消息(或事件)队列的体系结构仍然很流行。消息队列通常使用代理的“存储和转发”系统,事件在此系统中从一个代理传递到另一个代理,直到它们到达适当的使用者。ActiveMQ和RabbitMQ是消息队列框架的两个流行示例。这些项目都有多年的实践经验和成熟的技术社区。
流处理
另一方面,在流内处理中,组件在达到某个状态时发出事件。其他感兴趣的组件在事件流中侦听这些事件并作出相应的反应。事件不针对特定的收件人,而是对所有感兴趣的组件可用。
在流内处理中,组件可以同时对多个事件作出反应,并对多个流和事件应用复杂的 *** 作。有些流包括持久性,即事件在流上停留的时间可以根据需要延长。
通过流处理,系统可以重现事件的 历史 ,在事件发生后联机并仍然对其作出反应,甚至执行滑动窗口计算。例如,它可以从每秒的事件流计算每分钟的平均CPU使用量。
最流行的流处理框架之一是Apache Kafka。Kafka是许多项目使用的成熟和稳定的解决方案。它可以被认为是一种工业强度的流处理解决方案。Kafka有一个庞大的用户群、一个有用的社区和一个改进的工具集。
其他的选择
还有其他框架提供流和消息处理的组合,或者提供它们自己独特的解决方案。例如,Apache的最新产品Pulsar是一个开源的发布/订阅消息系统,它支持流和事件队列,所有这些都具有极高的性能。Pulsar的特点是丰富的-它提供多租户和地理复制-因此复杂。据说Kafka的目标是高吞吐量,而脉冲星的目标是低延迟。
NATS是另一种具有“合成”队列的发布/订阅消息系统。NATS是为发送小而频繁的信息而设计的。它提供了高性能和低延迟;然而,NATS认为某种程度的数据丢失是可以接受的,优先考虑性能而不是交付保证。
其他的设计考虑
一旦你选择了你的事件框架,这里有几个其他的挑战需要考虑:
•Event Sourcing
很难实现松耦合服务、不同的数据存储和原子事务的组合。一个可能有所帮助的模式是事件源。在事件源中,从来不直接对数据执行更新和删除;相反,实体的状态更改被保存为一系列事件。
•CQRS
上面的事件来源引入了另一个问题:由于需要从一系列事件构建状态,查询可能会很慢,而且很复杂。命令查询责任隔离(CQRS)是一种设计解决方案,它为插入 *** 作和读取 *** 作调用单独的模型。
•事件发现
事件驱动体系结构中最大的挑战之一是对服务和事件进行编目。在哪里可以找到事件描述和详细信息事件发生的原因是什么是哪个团队创造了这个活动他们在积极地工作吗
•应对变化
事件模式会改变吗如何在不破坏其他服务的情况下更改事件模式随着服务和事件数量的增长,如何回答这些问题变得至关重要。
成为一个好的事件消费者意味着要为变化的模式编码。成为一个好的事件生产者意味着要认识到模式更改如何影响其他服务,并创建经过良好设计的事件,这些事件被清楚地记录下来。
•内部部署vs托管部署
无论您的事件框架是什么,您还需要在自行部署框架(消息代理的 *** 作并不简单,特别是在高可用性的情况下),还是使用托管服务(如Heroku上的Apache Kafka)之间做出选择。
反模式
与大多数体系结构一样,事件驱动的体系结构具有自己的一组反模式。以下是一些需要注意的地方:
设计过多的事件
注意不要对创建事件过于兴奋。创建太多的事件将在服务之间创建不必要的复杂性,增加开发人员的认知负担,增加部署和测试的难度,并导致事件使用者的拥塞。不是每个方法都需要是一个事件。
通用的事件
不要使用通用事件,无论是在名称中还是在目的上。您希望其他团队了解您的事件为何存在、应该用于什么以及应该在什么时候使用。事件应该有特定的目的,并相应地命名。事件与通用名称或通用事件与混乱的旗帜,导致问题。
复杂的依赖关系图
注意那些相互依赖的服务,并创建复杂的依赖关系图或反馈循环。每个网络跳都会给原始请求增加额外的延迟,特别是离开数据中心的南北网络流量。
这取决于保证的订单、交付或副作用
事件是异步的;因此,包含顺序或重复的假设不仅会增加复杂性,而且会抵消基于事件的体系结构的许多关键优点。如果使用者有副作用,例如在数据库中添加值,则可能无法通过重播事件进行恢复。
过早优化
大多数产品一开始很小,然后随着时间的推移而增长。虽然您可能梦想将来需要扩展到大型复杂组织,但是如果您的团队很小,那么事件驱动架构的额外复杂性实际上可能会降低您的速度。相反,考虑使用简单的体系结构来设计系统,但是要包含必要的关注点分离,以便您可以随着需求的增长将其替换掉。
期望事件驱动来修复所有问题
在较低的技术级别上,不要期望事件驱动的体系结构能够修复所有的问题。虽然这种体系结构肯定可以改进许多技术功能障碍的领域,但它不能解决核心问题,比如缺乏自动化测试、缺乏团队沟通或过时的开发-ops实践。
理解事件驱动架构的优缺点,以及它们最常见的一些设计决策和挑战,是创建尽可能好的设计的重要部分。
消息队列(Message Queue)是一种进程间通信或同一进程的不同线程间的通信方式。
Broker(消息服务器)
Broker的概念来自与Apache ActiveMQ,通俗的讲就是MQ的服务器。
Producer(生产者)
业务的发起方,负责生产消息传输给broker
Consumer(消费者)
业务的处理方,负责从broker获取消息并进行业务逻辑处理
Topic(主题)
发布订阅模式下的消息统一汇集地,不同生产者向topic发送消息,由MQ服务器分发到不同的订阅 者,实现消息的广播
Queue(队列)
PTP模式下,特定生产者向特定queue发送消息,消费者订阅特定的queue完成指定消息的接收。
Message(消息体)
根据不同通信协议定义的固定格式进行编码的数据包,来封装业务数据,实现消息的传输
点对点模型用于消息生产者和消息消费者之间点到点的通信。
点对点模式包含三个角色:
每个消息都被发送到一个特定的队列,接收者从队列中获取消息。队列保留着消息,可以放在内存 中也可以持久化,直到他们被消费或超时。
特点:
发布订阅模型包含三个角色:
多个发布者将消息发送到Topic,系统将这些消息传递给多个订阅者。
特点:
AMQP即Advanced Message Queuing Protocol,是应用层协议的一个开放标准,为面向消息的中间件设计。消息中间件主要用于组件之间的解耦,消息的发送者无需知道消息使用者的存在,反之亦然。AMQP 的主要特征是面向消息、队列、路由(包括点对点和发布/订阅)、可靠性、安全。
优点:可靠、通用
MQTT(Message Queuing Telemetry Transport,消息队列遥测传输)是IBM开发的一个即时通讯协议,有可能成为物联网的重要组成部分。该协议支持所有平台,几乎可以把所有联网物品和外部连接起来,被用来当做传感器和致动器(比如通过Twitter让房屋联网)的通信协议。
优点:格式简洁、占用带宽小、移动端通信、PUSH、嵌入式系统
STOMP(Streaming Text Orientated Message Protocol)是流文本定向消息协议,是一种为MOM(Message Oriented Middleware,面向消息的中间件)设计的简单文本协议。STOMP提供一个可互 *** 作的连接格式,允许客户端与任意STOMP消息代理(Broker)进行交互。
优点:命令模式(非topic\queue模式)
XMPP(可扩展消息处理现场协议,Extensible Messaging and Presence Protocol)是基于可扩展标记语言(XML)的协议,多用于即时消息(IM)以及在线现场探测。适用于服务器之间的准即时 *** 作。核心是基于XML流传输,这个协议可能最终允许因特网用户向因特网上的其他任何人发送即时消息,即使其 *** 作系统和浏览器不同。
优点:通用公开、兼容性强、可扩展、安全性高,但XML编码格式占用带宽大
RabbitMQ 是实现 AMQP(高级消息队列协议)的消息中间件的一种,最初起源于金融系统,用于在分布式系统中存储转发消息,在易用性、扩展性、高可用性等方面表现不俗。 RabbitMQ 主要是为了实现系统之间的双向解耦而实现的。当生产者大量产生数据时,消费者无法快速消费,那么需要一个中间层。保存这个数据。
RabbitMQ 是一个开源的 AMQP 实现,服务器端用Erlang语言编写,支持多种客户端,如:Python、Ruby、NET、Java、JMS、C、PHP、ActionScript、XMPP、STOMP 等,支持 AJAX。用于在分布式系统中存储转发消息,在易用性、扩展性、高可用性等方面表现不俗。
Channel(通道)
道是两个管理器之间的一种单向点对点的的通信连接,如果需要双向交流,可以建立一对通道。
Exchange(消息交换机)
Exchange类似于数据通信网络中的交换机,提供消息路由策略。
RabbitMq中,producer不是通过信道直接将消息发送给queue,而是先发送给Exchange。一个Exchange可以和多个Queue进行绑定,producer在传递消息的时候,会传递一个ROUTING_KEY,Exchange会根据这个ROUTING_KEY按照特定的路由算法,将消息路由给指定的queue。和Queue一样,Exchange也可设置为持久化,临时或者自动删除。
Exchange有4种类型:direct(默认),fanout, topic, 和headers。
不同类型的Exchange转发消息的策略有所区别:
Binding(绑定)
所谓绑定就是将一个特定的 Exchange 和一个特定的 Queue 绑定起来。Exchange 和Queue的绑定可以是多对多的关系。
Routing Key(路由关键字)
exchange根据这个关键字进行消息投递。
vhost(虚拟主机)
在RabbitMq server上可以创建多个虚拟的message broker,又叫做virtual hosts (vhosts)。每一个vhost本质上是一个mini-rabbitmq server,分别管理各自的exchange,和bindings。vhost相当于物理的server,可以为不同app提供边界隔离,使得应用安全的运行在不同的vhost实例上,相互之间不会干扰。producer和consumer连接rabbit server需要指定一个vhost。
假设P1和C1注册了相同的Broker,Exchange和Queue。P1发送的消息最终会被C1消费。
基本的通信流程大概如下所示:
Consumer收到消息时需要显式的向rabbit broker发送basic。ack消息或者consumer订阅消息时设置auto_ack参数为true。
在通信过程中,队列对ACK的处理有以下几种情况:
即消息的Ackownledge确认机制,为了保证消息不丢失,消息队列提供了消息Acknowledge机制,即ACK机制,当Consumer确认消息已经被消费处理,发送一个ACK给消息队列,此时消息队列便可以删除这个消息了。如果Consumer宕机/关闭,没有发送ACK,消息队列将认为这个消息没有被处理,会将这个消息重新发送给其他的Consumer重新消费处理。
消息的收发处理支持事务,例如:在任务中心场景中,一次处理可能涉及多个消息的接收、处理,这应该处于同一个事务范围内,如果一个消息处理失败,事务回滚,消息重新回到队列中。
消息的持久化,对于一些关键的核心业务来说是非常重要的,启用消息持久化后,消息队列宕机重启后,消息可以从持久化存储恢复,消息不丢失,可以继续消费处理。
fanout 模式
模式特点:
direct 模式
任何发送到Direct Exchange的消息都会被转发到routing_key中指定的Queue。
如果一个exchange 声明为direct,并且bind中指定了routing_key,那么发送消息时需要同时指明该exchange和routing_key。
简而言之就是:生产者生成消息发送给Exchange, Exchange根据Exchange类型和basic_publish中的routing_key进行消息发送 消费者:订阅Exchange并根据Exchange类型和binding key(bindings 中的routing key) ,如果生产者和订阅者的routing_key相同,Exchange就会路由到那个队列。
topic 模式
前面讲到direct类型的Exchange路由规则是完全匹配binding key与routing key,但这种严格的匹配方式在很多情况下不能满足实际业务需求。
topic类型的Exchange在匹配规则上进行了扩展,它与direct类型的Exchage相似,也是将消息路由到binding key与routing key相匹配的Queue中,但这里的匹配规则有些不同。
它约定:
以上图中的配置为例,routingKey=”quickorangerabbit”的消息会同时路由到Q1与Q2,routingKey=”lazyorangefox”的消息会路由到Q1,routingKey=”lazybrownfox”的消息会路由到Q2,routingKey=”lazypinkrabbit”的消息会路由到Q2(只会投递给Q2一次,虽然这个routingKey与Q2的两个bindingKey都匹配);routingKey=”quickbrownfox”、routingKey=”orange”、routingKey=”quickorangemalerabbit”的消息将会被丢弃,因为它们没有匹配任何bindingKey。
RabbitMQ,部署分三种模式:单机模式,普通集群模式,镜像集群模式。
普通集群模式
多台机器部署,每个机器放一个rabbitmq实例,但是创建的queue只会放在一个rabbitmq实例上,每个实例同步queue的元数据。
如果消费时连的是其他实例,那个实例会从queue所在实例拉取数据。这就会导致拉取数据的开销,如果那个放queue的实例宕机了,那么其他实例就无法从那个实例拉取,即便开启了消息持久化,让rabbitmq落地存储消息的话,消息不一定会丢,但得等这个实例恢复了,然后才可以继续从这个queue拉取数据, 这就没什么高可用可言,主要是提供吞吐量 ,让集群中多个节点来服务某个queue的读写 *** 作。
镜像集群模式
queue的元数据和消息都会存放在多个实例,每次写消息就自动同步到多个queue实例里。这样任何一个机器宕机,其他机器都可以顶上,但是性能开销太大,消息同步导致网络带宽压力和消耗很重,另外,没有扩展性可言,如果queue负载很重,加机器,新增的机器也包含了这个queue的所有数据,并没有办法线性扩展你的queue。此时,需要开启镜像集群模式,在rabbitmq管理控制台新增一个策略,将数据同步到指定数量的节点,然后你再次创建queue的时候,应用这个策略,就会自动将数据同步到其他的节点上去了。
Kafka 是 Apache 的子项目,是一个高性能跨语言的分布式发布/订阅消息队列系统(没有严格实现 JMS 规范的点对点模型,但可以实现其效果),在企业开发中有广泛的应用。高性能是其最大优势,劣势是消息的可靠性(丢失或重复),这个劣势是为了换取高性能,开发者可以以稍降低性能,来换取消息的可靠性。
一个Topic可以认为是一类消息,每个topic将被分成多个partition(区),每个partition在存储层面是append log文件。任何发布到此partition的消息都会被直接追加到log文件的尾部,每条消息在文件中的位置称为offset(偏移量),offset为一个long型数字,它是唯一标记一条消息。它唯一的标记一条消息。kafka并没有提供其他额外的索引机制来存储offset,因为在kafka中几乎不允许对消息进行“随机读写”。
Kafka和JMS(Java Message Service)实现(activeMQ)不同的是:即使消息被消费,消息仍然不会被立即删除。日志文件将会根据broker中的配置要求,保留一定的时间之后删除;比如log文件保留2天,那么两天后,文件会被清除,无论其中的消息是否被消费。kafka通过这种简单的手段,来释放磁盘空间,以及减少消息消费之后对文件内容改动的磁盘IO开支。
对于consumer而言,它需要保存消费消息的offset,对于offset的保存和使用,有consumer来控制;当consumer正常消费消息时,offset将会"线性"的向前驱动,即消息将依次顺序被消费。事实上consumer可以使用任意顺序消费消息,它只需要将offset重置为任意值。(offset将会保存在zookeeper中,参见下文)
kafka集群几乎不需要维护任何consumer和producer状态信息,这些信息有zookeeper保存;因此producer和consumer的客户端实现非常轻量级,它们可以随意离开,而不会对集群造成额外的影响。
partitions的设计目的有多个。最根本原因是kafka基于文件存储。通过分区,可以将日志内容分散到多个server上,来避免文件尺寸达到单机磁盘的上限,每个partiton都会被当前server(kafka实例)保存;可以将一个topic切分多任意多个partitions,来消息保存/消费的效率。此外越多的partitions意味着可以容纳更多的consumer,有效提升并发消费的能力。(具体原理参见下文)。
一个Topic的多个partitions,被分布在kafka集群中的多个server上;每个server(kafka实例)负责partitions中消息的读写 *** 作;此外kafka还可以配置partitions需要备份的个数(replicas),每个partition将会被备份到多台机器上,以提高可用性。
基于replicated方案,那么就意味着需要对多个备份进行调度;每个partition都有一个server为"leader";leader负责所有的读写 *** 作,如果leader失效,那么将会有其他follower来接管(成为新的leader);follower只是单调的和leader跟进,同步消息即可。由此可见作为leader的server承载了全部的请求压力,因此从集群的整体考虑,有多少个partitions就意味着有多少个"leader",kafka会将"leader"均衡的分散在每个实例上,来确保整体的性能稳定。
Producers
Producer将消息发布到指定的Topic中,同时Producer也能决定将此消息归属于哪个partition;比如基于"round-robin"方式或者通过其他的一些算法等。
Consumers
本质上kafka只支持Topic。每个consumer属于一个consumer group;反过来说,每个group中可以有多个consumer。发送到Topic的消息,只会被订阅此Topic的每个group中的一个consumer消费。
如果所有的consumer都具有相同的group,这种情况和queue模式很像;消息将会在consumers之间负载均衡。
如果所有的consumer都具有不同的group,那这就是"发布-订阅";消息将会广播给所有的消费者。
在kafka中,一个partition中的消息只会被group中的一个consumer消费;每个group中consumer消息消费互相独立;我们可以认为一个group是一个"订阅"者,一个Topic中的每个partions,只会被一个"订阅者"中的一个consumer消费,不过一个consumer可以消费多个partitions中的消息。kafka只能保证一个partition中的消息被某个consumer消费时,消息是顺序的。事实上,从Topic角度来说,消息仍不是有序的。
Kafka的设计原理决定,对于一个topic,同一个group中不能有多于partitions个数的consumer同时消费,否则将意味着某些consumer将无法得到消息。
Guarantees
Kafka就比较适合高吞吐量并且允许少量数据丢失的场景,如果非要保证“消息可靠传输”,可以使用JMS。
Kafka Producer 消息发送有两种方式(配置参数 producertype):
对于同步方式(producertype=sync)?Kafka Producer 消息发送有三种确认方式(配置参数 acks):
kafka的设计初衷是希望作为一个统一的信息收集平台,能够实时的收集反馈信息,并需要能够支撑较大的数据量,且具备良好的容错能力。
持久性
kafka使用文件存储消息,这就直接决定kafka在性能上严重依赖文件系统的本身特性。且无论任何OS下,对文件系统本身的优化几乎没有可能。文件缓存/直接内存映射等是常用的手段。因为kafka是对日志文件进行append *** 作,因此磁盘检索的开支是较小的;同时为了减少磁盘写入的次数,broker会将消息暂时buffer起来,当消息的个数(或尺寸)达到一定阀值时,再flush到磁盘,这样减少了磁盘IO调用的次数。
性能
需要考虑的影响性能点很多,除磁盘IO之外,我们还需要考虑网络IO,这直接关系到kafka的吞吐量问题。kafka并没有提供太多高超的技巧;对于producer端,可以将消息buffer起来,当消息的条数达到一定阀值时,批量发送给broker;对于consumer端也是一样,批量fetch多条消息。不过消息量的大小可以通过配置文件来指定。对于kafka broker端,似乎有个sendfile系统调用可以潜在的提升网络IO的性能:将文件的数据映射到系统内存中,socket直接读取相应的内存区域即可,而无需进程再次copy和交换。 其实对于producer/consumer/broker三者而言,CPU的开支应该都不大,因此启用消息压缩机制是一个良好的策略;压缩需要消耗少量的CPU资源,不过对于kafka而言,网络IO更应该需要考虑。可以将任何在网络上传输的消息都经过压缩。kafka支持gzip/snappy等多种压缩方式。
生产者
负载均衡: producer将会和Topic下所有partition leader保持socket连接;消息由producer直接通过socket发送到broker,中间不会经过任何“路由层“。事实上,消息被路由到哪个partition上,有producer客户端决定。比如可以采用“random““key-hash““轮询“等,如果一个topic中有多个partitions,那么在producer端实现“消息均衡分发“是必要的。
其中partition leader的位置(host:port)注册在zookeeper中,producer作为zookeeper client,已经注册了watch用来监听partition leader的变更事件。
异步发送:将多条消息暂且在客户端buffer起来,并将他们批量的发送到broker,小数据IO太多,会拖慢整体的网络延迟,批量延迟发送事实上提升了网络效率。不过这也有一定的隐患,比如说当producer失效时,那些尚未发送的消息将会丢失。
消费者
consumer端向broker发送“fetch”请求,并告知其获取消息的offset;此后consumer将会获得一定条数的消息;consumer端也可以重置offset来重新消费消息。
在JMS实现中,Topic模型基于push方式,即broker将消息推送给consumer端。不过在kafka中,采用了pull方式,即consumer在和broker建立连接之后,主动去pull(或者说fetch)消息;这中模式有些优点,首先consumer端可以根据自己的消费能力适时的去fetch消息并处理,且可以控制消息消费的进度(offset);此外,消费者可以良好的控制消息消费的数量,batch fetch。
其他JMS实现,消息消费的位置是有prodiver保留,以便避免重复发送消息或者将没有消费成功的消息重发等,同时还要控制消息的状态。这就要求JMS broker需要太多额外的工作。在kafka中,partition中的消息只有一个consumer在消费,且不存在消息状态的控制,也没有复杂的消息确认机制,可见kafka broker端是相当轻量级的。当消息被consumer接收之后,consumer可以在本地保存最后消息的offset,并间歇性的向zookeeper注册offset。由此可见,consumer客户端也很轻量级。
对于JMS实现,消息传输担保非常直接:有且只有一次(exactly once)。
在kafka中稍有不同:
at most once: 消费者fetch消息,然后保存offset,然后处理消息;当client保存offset之后,但是在消息处理过程中出现了异常,导致部分消息未能继续处理。那么此后"未处理"的消息将不能被fetch到,这就是"at most once"。
at least once: 消费者fetch消息,然后处理消息,然后保存offset。如果消息处理成功之后,但是在保存offset阶段zookeeper异常导致保存 *** 作未能执行成功,这就导致接下来再次fetch时可能获得上次已经处理过的消息,这就是"at least once",原因offset没有及时的提交给zookeeper,zookeeper恢复正常还是之前offset状态。
exactly once: kafka中并没有严格的去实现(基于2阶段提交,事务),我们认为这种策略在kafka中是没有必要的。
通常情况下“at-least-once”是我们首选。(相比at most once而言,重复接收数据总比丢失数据要好)。
kafka高可用由多个broker组成,每个broker是一个节点;
创建一个topic,这个topic会划分为多个partition,每个partition存在于不同的broker上,每个partition就放一部分数据。
kafka是一个分布式消息队列,就是说一个topic的数据,是分散放在不同的机器上,每个机器就放一部分数据。
在08版本以前,是没有HA机制的,就是任何一个broker宕机了,那个broker上的partition就废了,没法写也没法读,没有什么高可用性可言。
08版本以后,才提供了HA机制,也就是就是replica副本机制。每个partition的数据都会同步到其他的机器上,形成自己的多个replica副本。然后所有replica会选举一个leader出来,那么生产和消费都跟这个leader打交道,然后其他replica就是follower。
写的时候,leader会负责把数据同步到所有follower上去,读的时候就直接读leader上数据即可。
kafka会均匀的将一个partition的所有replica分布在不同的机器上,从而提高容错性。
如果某个broker宕机了也没事,它上面的partition在其他机器上都有副本的,如果这上面有某个partition的leader,那么此时会重新选举一个新的leader出来,大家继续读写那个新的leader即可。这就有所谓的高可用性了。
写数据的时候,生产者就写leader,然后leader将数据落地写本地磁盘,接着其他follower自己主动从leader来pull数据。一旦所有follower同步好数据了,就会发送ack给leader,leader收到所有follower的ack之后,就会返回写成功的消息给生产者。
消息丢失会出现在三个环节,分别是生产者、mq中间件、消费者:
RabbitMQ
Kafka
大体和RabbitMQ相同。
Rabbitmq
需要保证顺序的消息投递到同一个queue中,这个queue只能有一个consumer,如果需要提升性能,可以用内存队列做排队,然后分发给底层不同的worker来处理。
Kafka
写入一个partition中的数据一定是有序的。生产者在写的时候 ,可以指定一个key,比如指定订单id作为key,这个订单相关数据一定会被分发到一个partition中去。消费者从partition中取出数据的时候也一定是有序的,把每个数据放入对应的一个内存队列,一个partition中有几条相关数据就用几个内存队列,消费者开启多个线程,每个线程处理一个内存队列。
还记得我们在分析消费端的源码的时候,所讲到的 prefetchsize 吗?
可以参考上一篇的博客: >
以上就是关于activemq消息队列和kafka有什么区别全部的内容,包括:activemq消息队列和kafka有什么区别、事件驱动微服务体系架构、消息队列原理及选型等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)