线性回归r值怎么算

线性回归r值怎么算,第1张

你这个回归很有问题,标准误差是0,t值都一样而且都非常大,表示你的解释变量(就是你那些个指标)之间很可能是完全共线性也就是完全线性相关(如果你用了虚拟变量,比如有三个可能的情况要表示,而你又正好用了三个虚拟变量来描述它们,就肯定是完全共线性了),而且它们和你的被解释变量应该也是完全线性相关,否则不可能算出100%的拟合优度R方。
另外一个可能是你的数据太少,甚至你的样本容量小于要估计的系数的个数,那么线性回归的结果就是可以算出一个零误差的直线。就好比你在平面直角坐标系里,如果只知道两个样本点(x1,y1),
(x2,
y2),回归方程是
y
=
kx
+
b
+
u

你显然可以让
u
=
0
去估计出
k
和b,
k
=
两点连线斜率,
b
也可以算出来。这样当然会导致100%拟合。
可以的话看看你的数据,只有看到数据了才能知道真正的原因。

一、图示法 图示法是一种很直观的检验方法,它是通过对残差散点图的分析来判断随机误差项的序列相关性。把给定的回归模型直接用普通最小二乘法估计参数,求出残差项,并把作为随机误差项的估计值,画出的散点图。由于把残差项作为随机误差项的估计值,随机误差项的性质也应能在残差中反映出来。
(一)按时间顺序绘制残差图 如果残差,,随着时间的变化而呈现有规律的变动,则存在相关性,进而可以推断随机误差项之间存在序列相关性。如果随着时间的变化,并不频繁地改变符号,而是取几个正值后又连续地取几个负值(或者,与之相反,几个连续的负值后面紧跟着几个正值),则表明随机误差项存在正的序列相关,(见图6-1);如果随着时间的变化,不断地改变符号(见图6-2),那么随机误差项之间存在负的序列相关。 图6-2 负序列相关
(二)绘制,的散点图 计算和,以为纵轴,为横轴,绘制(,),的散点图。如果大部分点落在第Ⅰ,Ⅲ象限,表明随机误差项存在正的序列相关(见图6-3);如果大部分点落在第Ⅱ,Ⅳ象限,表明随机误差项存在负的序列相关(见图6-4)。 图6-3 正序列相关 图6-4 负序列相关二、杜宾——瓦特森(D-W)检验 1、适用条件杜宾——瓦特森检验,简称D—W检验,是JDurbin(杜宾)和GSWatson(瓦特森)于1951年提出的一种适用于小样本的检验序列相关性的方法。D-W检验是目前检验序列相关性最为常用的方法,但它只适用于检验随机误差项具有一阶自回归形式的序列相关问题。在使用该方法时前,必须注意该方法的适用条件。回归模型含有截距项,即截距项不为零;解释变量是非随机的;随机误差项为一阶自相关,即;回归模型中不应含有滞后内生变量作为解释变量,即不应出现下列形式: 其中,为的滞后一期变量;无缺失数据。当上述条件得到满足时,我们可以利用D-W方法检验序列相关问题。2、具体过程(1)提出假设,即不存在序列相关,,即存在序列相关性(2)定义D-W检验统计量为了检验上述假设,构造D-W检验统计量首先要求出回归估计式的残差,定义D-W统计量为: (6-11)其中,。由(6-11)式有 (6-12)由于与只有一次观测之差,故可认为近似相等,则由(6-12)式得 (6-13)随机误差序列的自相关系数定义为: (6-14)在实际应用中,随机误差序列的真实值是未知的,需要用估计值代替,得到自相关系数的估计值为: (6-15)在认为与近似相等的假定下,则(6-15)式可化简为: (6-16)所以,(6-13)式可以写成 (6-17)(3)检验序列相关性因为自相关系数的值介于-1和1之间,所以:,而且有值与的对应关系如表6-1所示。表6-1 值与的对应关系表值DW值随机误差项的序列相关性-1(-1,0) 0(0,1)1 4(2,4) 2(0,2)0 完全负序列相关 负序列相关 无序列相关 正序列相关 完全正序列相关从表6-1中,我们可以知道当值显著地接近于0或者4时,则存在序列相关性;而接近于2时,则不存在序列相关性。这样只要知道统计量的概率分布,在给定的显著性水平下,根据临界值的位置就可以对原假设进行检验。但是统计量的概率分布很难确定,作为一种变通的处理方法,杜宾和瓦特森在5%和1%的显著水平下,找到了上限临界值和下限临界值,并编制了D-W检验的上、下限表。这两个上下限只与样本的大小和解释变量的个数有关,而与解释变量的取值无关。具体的判别规则为:(1) ,拒绝,表明随机误差项之间存在正的序列相关;(2) ,拒绝,表明随机误差项之间存在正的序列相关;(3) ,接受,即认为随机误差项之间不存在序列相关性;(4) 或,不能判定是否存在序列相关性。上述四条判别规则可用图6-5表示: 3D-W检验特点D-W检验法的优点在于其计算简单、应用方便,目前已成为最常用的序列相关性检验的方法。EViews软件在输出回归分析结果中直接给出了DW值,并且人们也习惯将DW值作为常规的检验统计量,连同值等一起在报告回归分析的计算结果时表明。但D-W检验也存在很大的局限性,在应用时应予以重视。D-W检验不适应随机误差项具有高阶序列相关的检验; D-W检验有两个无法判别的区域,一旦DW值落入这两个区域,必须调整样本容量或采取其他的检验方法;这一方法不适用于对联立方程模型中各单一方程随机误差项序列相关性的检验;D-W检验不适用于模型中含有滞后的被解释变量的情况。
二、回归检验法 1、定义回归检验法适用于任一随机变量序列相关性的检验,并能提供序列相关的具体形式及相关系数的估计值。2、应用步骤分三步进行:第一步,依据模型变量的样本观测数据,应用普通最小二乘法求出模型的样本估计式,并计算出随机误差项的估计值;第二步,建立与、的相互关系模型,由于它们相互关系的形式和类型是未知的,需要用多种函数形式进行试验,常用的函数形式主要有: 第三步,对于不同形式的与、的相互关系模型,用普通最小二乘法进行参数估计,得出回归估计式,再对估计式进行统计检验。如果检验的结果是每一种估计式都不显著的,就表明与、是不相关的,随机误差项之间不存在序列相关性。如果通过检验发现某一个估计式是显著的(若有多个估计式显著就选择最为显著的),就表明与、是相关的,随机误差项之间存在序列相关性,相关的形式就是统计检验显著的回归估计式,相关系数就是该估计式的参数估计值。回归检验法需要用多种形式的回归模型对与、的相关性进行试验分析,工作量大、计算复杂,显得极为繁琐。线性回归模型中随机误差项序列相关性的检验,在计量经济学的研究中是一个很重要的问题。但目前应用的检验方法都存在一些缺限和局限,还不能对这一问题进行完全有效的检验,更为完善的检验方法有待于进一步研究。有关于高阶序列相关性的检验,可以参考其它相关教科书。第三节 序列相关的处理 如果检验发现随机误差项之间存在序列相关性,应当首先分析序列相关产生的原因,引起序列相关的原因不同,修正序列相关的方法也不同。如果是回归模型变量选用不当,则应对模型中包含的解释变量进行调整,去掉无关的以及非重要的变量,引入重要的变量;如果是模型的形式选择不当,则应重新确定正确的模型形式;如果以上两种方法都不能消除序列相关性,则需要采用其他数学方法进行处理以消除序列相关性,然后再对模型中的未知参数进行估计。
三、差分法 差分法将原模型变换为差分模型,用增量数据代替原来的样本数据。差分法分为一阶差分法和广义差分法。
(一)一阶差分法 假设原模型为: (6-18)一阶差分法变换后的模型为: (6-19)其中, 如果,原模型存在完全一阶正相关,即 ,其中不存在序列相关性,那么差分模型满足应用普通最小二乘法的基本假设。用普通最小二乘法估计差分模型得到的参数估计值,即为原模型参数的无偏、有效估计值。
(二)广义差分法 一阶差分法仅适用于随机误差项的自相关系数等于1的情形。但在一般情况下,完全一阶正相关的情况并不多见,在这种情况下,随机误差项的序列相关性就要用广义差分法进行修正。对于模型(6-18)如果随机误差项存在一阶自相关,即,其中,为随机误差项的自相关系数,且有,不存在序列相关性。将(6-18)式滞后一期,并左右两边同乘,可得 (6-20)将(6-18)式减去(6-20)式,得 (6-21)在为已知的情况下,我们可以对(6-21)式进行如下变换 (6-22)将变换后的新变量代入(6-21)式,便可得到一个新的模型表示式: (6-23) 我们把上述变换过程称为广义差分变换,把通过广义差分变换得到的模型称为广义差分模型。我们应该注意到这一变换过程所构建的新变量,,由于差分变换要损失一个观测值,样本个数由个减少到个。为了避免损失自由度,可以将第一个观测值作如下变换:,通过对原模型进行广义差分变换,我们可以得到广义差分模型,广义差分模型中的随机误差项满足线性回归的经典假设,对广义差分模型进行OLS估计,得到的参数估计值仍然是最佳估计量。
四、杜宾两步法 进行广义差分变换的前提是已知的值。但是随机误差项的自相关系数,的值不可观测,使得的值也是未知的。所以利用广义差分法处理序列相关性时,首先需要估计出的值。这可以用杜宾(Durbin)两步估计法。我们以一元线性回归模型为例,对于模型 (6-24)如果随机误差项存在阶自回归形式的序列相关,即 (6-25)当、、时,便可利用杜宾两步法对的相关系数进行估计。第一步,对(6-24)式进行差分变换,可得 (6-26)整理(6-26)式,可得 (6-27)第二步:应用普通最小二乘法对包含被解释变量及解释变量的滞后变量在内的模型(6-27)式进行估计,求出随机误差项的自相关系数,,…, 的估计值,,…, 。再将,,…, 代入(6-26)式,可得 (6-28)(6-28)式的随机误差项具有零均值、方差齐性、不存在序列相关性的特点。在,,…, 已知的情况下,可以用普通最小乘法对(6-28)式进行估计,求出参数、的估计值、。此方法也适用于多元线性回归模型。杜宾两步法不但求出了自相关系数的估计值,而且也得出了模型参数的估计值。
五、迭代法 迭代估计法或科克伦-奥克特(Cochrane-Orcutt)估计法,是用逐步逼近的办法求的估计值。仍以(6-24)式为例,假设随机误差项存在一阶自回归形式的序列相关,即,,其中满足零均值、方差齐性、无序列相关性。迭代估计的具体步骤为:第一步,利用OLS法估计模型,计算残差出;第二步,根据上一步计算出的残差计算的估计值: 第三步,利用上一步求得的值对(6-24)式进行广义差分变换: 并得到广义差分模型:;第四步,再利用OLS法估计,计算出残差,根据残差计算的第二次逼近值: 第五步,重复执行第三、四步,直到的前后两次估计值比较接近,即估计误差小于事先给定的精度:。此时,以 作为的估计值,并用广义差分法进行变换,得到回归系数

直接按照题目把所给的几个函数图像画出来(要准确,一般都是几条直线)
然后求是直线的上还是下,比如说:
x-y-1>0,那就先把直线x-y-1=0画出来
再代个点(不要是这条直线上的点)进去,比如说(0,0)带进去,得到“0-0-1>0”
显然不成立。(0,0)在这条直线的上方,不成立,所以x-y-1>0是代表在直线x-y-1=0的下方的区域
或者:把x-y-1>0换成y<x-1
很容易看出来y<x-1表示在直线y=x-1下方的区域
同样地,其它的区域也是照着这么画。
注意因为是“>”“<”,所以直线上的点都取不到,因此最后要把这条直线画成虚线,再画阴影确定区域,这点非常容易疏忽,也是最容易扣分的地方
画完之后,因为“{”表示交集的意思,所以你真正最后所要画的是这几个区域都有覆盖的区域
高考题一般就是给你的区域求出来后是个三角形,于是就有这片区域的界限和顶点了
基本常见的题型是目标函数z=f(x,y)。以下举例:求出来后这个区域的三个顶点为(1,1)、(1,3)、(2,2),边界上的每个点都可以取得到
一般逃不过这3种考法:
①z=ax+by型:
首先要先知道,初中所谓的一般一次函数方程y=kx+b与y轴的交点是(0,b),斜率k
比如说:z=2x+y
解法:y= -2x-z与y轴的交点是(0,-z),斜率为-2
(若出现因为不知道-z的值,所以难以下手的问题,不要急,先画直线y=-2x)
画出直线y=-2x后,再将这条直线上下平移,保证直线经过这片区域,看看符合的直线y=-2x-z的极限是哪两条。(平移的时候可以用尺子的就很容易看出来了)
看得出来,当直线过点(1,1)与(2,2)取得“极限”,
带进去,当直线经过点(1,1)的时候交y轴于最低点(0,-z1),经过点(2,2)与y轴交于最高点(0,-z2)
从而求出z1,z2
或者直接将(1,1)与(2,2)带进去求得这两个“z ”的大小,求的一个z是-3,一个是-6,于是z∈[-6,-3]
以此类推。。。。。。
②z=(ax+b)/(cy+d)型:
基本概念:过点(x1,y1)与(x2,y2)(x1≠x2)的直线斜率k=(y1-y2)/(x1-x2)=(y2-y1)/(x2-x1)
比如z=y/(x+1)
就看成是z=(y-0)/(x - -1)
z是过点(x,y)与(-1,0)的直线的斜率,其中(x,y)在区域内,另一个点是 定点(0,-1)
所以就先将(-1,0)标出来,用尺子移动这个斜率且过这个定点,就可以看出来,过点(1,1)时斜率最小,过点(1,3)时斜率最大
将这两个点带进去就行了。
反之,如果是z=(x+1)/y,就把z看做是过定点(-1,0)的斜率的倒数。正数范围内,数越大,倒数越小,所以
③z=(x-a)²+(y-b)²型:
基本知识:(x-a)²+(y-b)²=r²表示圆心为点(a,b)、半径为r的圆(如果r=0,就表示点(a,b))
比如说,z=(x-1)²+(y-1)²是圆心为点(1,1)、半径为根号z的圆(或点),因此一下子就看出来
z∈[0,√2](注意这个圆(或点)必须过这片区域)
有的并不是这么容易看出来的,比如说z=x²+y²
圆心在(0,0),那么半径的最值一定是当这个圆经过区域的顶点的时候取到的。(如果想知道为什么就自己找几个试试看看)
所以将点(1,1)、(1,3)、(2,2)带进去,算出这三个z哪个最大哪个最小,这就是z的取值范围
以上的这两个例子都是圆心不在区域里面的情况,如果是在这个三角形里面的话,那么最小值就是0,最大值同样还是经过点(1,1)或(1,3)或(2,2)时取到的,同样三个点带进去,就求出三个z的值,比较出里边的最大值z0,那么z∈[0,z0]
对于第二点,我再次提醒一下,我举的那个例子是在保证斜率>0的情况下才这么好看出来。有时候这个区域会在x轴下方,甚至是一部分在上方,一部分在下方。这就需要熟练记住直线斜率的规则了:(记直线y=kx)
k=0时,直线与x轴重合,
k>0想象一下用一只手将直线在y轴的右侧开始往上掰时直线是上升的,越倾斜的直线,斜率就越大,然后无限趋近于y轴时斜率为+∞
越过y轴后,k立马变为-∞,再将这个直线(在y轴左侧)往下“掰”,k又从-∞逐渐增大。
k<0想象一下用一只手将直线在y轴的右侧开始往下掰时直线是下降的,越倾斜的直线,斜率就越小,然后无限趋近于y轴时斜率为-∞
越过y轴后,k立马变为+∞,再将这个直线(在y轴左侧)往上“掰”,k又从+∞逐渐减小。
讲了这么多,应该还能撑得住吧???希望贵君能理解
最后说一下:一般关于现行回归的题目有可能会给你的是应用题,那就要像初中的物理一样先列出“已知”:就是依据题意设几个数(x与y等),从题目的已知条件中列出x与y等的关系式,再用上述的方法求。要注意:x与y本身也是有范围的,要写明!

1线性回归和非线性回归没有实质性的区别,都是寻找合适的参数去满足已有数据的规律拟和出来的方程(模型)一般用来内差计算或小范围的外差2Y与X之间一般都有内部联系,如E=mc^2所以回归前可收集相关信息,或可直接应用3Y和每个X之间作出散点图,观察他们的对应关系如果是线性的,改参数可以适用线性回归;否则,可考虑非线性回归4线性回归可直接用最小二乘法计算对应系数,对系数做假设检验(H0:b=0,Ha:b0),排除影响小的变量,再次回归即可;非线性可以考虑对X或Y作变换,如去对数,平方,开方,指数等,尽可能转化为线性回归即可5参考拟和优度R^2和方差S,对模型的准确性有一定的认识

 Logistic回归主要分为三类,一种是因变量为二分类得logistic回归,这种回归叫做二项logistic回归,一种是因变量为无序多分类得logistic回归,比如倾向于选择哪种产品,这种回归叫做多项logistic回归。还有一种是因变量为有序多分类的logistic回归,比如病重的程度是高,中,低呀等等,这种回归也叫累积logistic回归,或者序次logistic回归。 二值logistic回归: 选择分析——回归——二元logistic,打开主面板,因变量勾选你的二分类变量,这个没有什么疑问,然后看下边写着一个协变量。有没有很奇怪什么叫做协变量?在二元logistic回归里边可以认为协变量类似于自变量,或者就是自变量。把你的自变量选到协变量的框框里边。 细心的朋友会发现,在指向协变量的那个箭头下边,还有一个小小的按钮,标着ab,这个按钮的作用是用来选择交互项的。我们知道,有时候两个变量合在一起会产生新的效应,比如年龄和结婚次数综合在一起,会对健康程度有一个新的影响,这时候,我们就认为两者有交互效应。那么我们为了模型的准确,就把这个交互效应也选到模型里去。我们在右边的那个框框里选择变量a,按住ctrl,在选择变量b,那么我们就同时选住这两个变量了,然后点那个ab的按钮,这样,一个新的名字很长的变量就出现在协变量的框框里了,就是我们的交互作用的变量。 然后在下边有一个方法的下拉菜单。默认的是进入,就是强迫所有选择的变量都进入到模型里边。除去进入法以外,还有三种向前法,三种向后法。一般默认进入就可以了,如果做出来的模型有变量的p值不合格,就用其他方法在做。再下边的选择变量则是用来选择你的个案的。一般也不用管它。 选好主面板以后,单击分类(右上角),打开分类对话框。在这个对话框里边,左边的协变量的框框里边有你选好的自变量,右边写着分类协变量的框框则是空白的。你要把协变量里边的字符型变量和分类变量选到分类协变量里边去(系统会自动生成哑变量来方便分析,什么事哑变量具体参照前文)。这里的字符型变量指的是用值标签标注过得变量,不然光文字,系统也没法给你分析啊。选好以后,分类协变量下边还有一个更改对比的框框,我们知道,对于分类变量,spss需要有一个参照,每个分类都通过和这个参照进行比较来得到结果,更改对比这个框框就是用来选择参照的。默认的对比是指示符,也就是每个分类都和总体进行比较,除了指示符以外还有简单,差值等。这个框框不是很重要,默认就可以了。 点击继续。然后打开保存对话框,勾选概率,组成员,包含协方差矩阵。点击继续,打开选项对话框,勾选分类图,估计值的相关性,迭代历史,exp(B)的CI,在模型中包含常数,输出——在每个步骤中。如果你的协变量有连续型的,或者小样本,那还要勾选Hosmer-Lemeshow拟合度,这个拟合度表现的会较好一些。 继续,确定。 然后,就会输出结果了。主要会输出六个表。 第一个表是模型系数综合检验表,要看他模型的p值是不是小于005,判断我们这个logistic回归方程有没有意义。 第二个表示模型汇总表。这个表里有两个R^2,叫做广义决定系数,也叫伪R^2,作用类似于线性回归里的决定系数,也是表示这个方程能够解释模型的百分之多少。由于计算方法不同,这两个广义决定系数的值往往不一样,但是出入并不会很大。 在下边的分类表则表述了模型的稳定性。这个表最后一行百分比校正下边的三个数据列出来在实际值为0或者1时,模型预测正确的百分比,以及模型总的预测正确率。一般认为预测正确概率达到百分之五十就是良好(标准真够低的),当然正确率越高越好。 在然后就是最重要的表了,方程中的变量表。第一行那个B下边是每个变量的系数。第五行的p值会告诉你每个变量是否适合留在方程里。如果有某个变量不适合,那就要从新去掉这个变量做回归。根据这个表就可以写出logistic方程了:P=Exp(常量+a1变量1+a2变量2。。。)/(1+Exp(常量+a1变量1+a2变量2。。。))。如果大家学过一点统计,那就应该对这个形式的方程不陌生。提供变量,它最后算出来会是一个介于0和1的数,也就是你的模型里设定的值比较大的情况发生的概率,比如你想推算会不会治愈,你设0治愈,1为没有治愈。那你的模型算出来就是没有治愈的概率。如果你想直接计算治愈的概率,那就需要更改一下设定,用1去代表治愈。 此外倒数后两列有一个EXP(B),也就是OR值,哦,这个可不是或者的意思,OR值是优势比。在线性回归里边我们用标准化系数来对比两个自变量对于因变量的影响力的强弱,在logistic回归里边我们用优势比来比较不同的情况对于因变量的影响。举个例子。比如我想看性别对于某种病是否好转的影响,假设0代表女,1代表男,0代表不好转,1代表好转。发现这个变量的OR值为29,那么也就是说男人的好转的可能是女人好转的29倍。注意,这里都是以数值较大的那个情况为基准的。而且OR值可以直接给出这个倍数。如果是0,1,2各代表一类情况的时候,那就是2是1的29倍,1是0的29倍,以此类推。OR值对于方程没什么贡献,但是有助于直观的理解模型。在使用OR值得时候一定要结合它95%的置信区间来进行判断。 此外还有相关矩阵表和概率直方图,就不再介绍了。 多项logistic回归: 选择分析——回归——多项logistic,打开主面板,因变量大家都知道选什么,因变量下边有一个参考类别,默认的第一类别就可以。再然后出现了两个框框,因子和协变量。很明显,这两个框框都是要你选因变量的,那么到底有什么区别呢?嘿嘿,区别就在于,因子里边放的是无序的分类变量,比如性别,职业什么的,以及连续变量(实际上做logistic回归时大部分自变量都是分类变量,连续变量是比较少的。),而协变量里边放的是等级资料,比如病情的严重程度啊,年龄啊(以十年为一个年龄段撒,一年一个的话就看成连续变量吧还是)之类的。在二项logistic回归里边,系统会自动生成哑变量,可是在多项logistic回归里边,就要自己手动设置了。参照上边的解释,不难知道设置好的哑变量要放到因子那个框框里去。 然后点开模型那个对话框,哇,好恐怖的一个对话框,都不知道是干嘛的。好,我们一点点来看。上边我们已经说过交互作用是干嘛的了,那么不难理解,主效应就是变量本身对模型的影响。明确了这一点以后,这个对话框就没有那么难选了。指定模型那一栏有三个模型,主效应指的是只做自变量和因变量的方程,就是最普通的那种。全因子指的是包含了所有主效应和所有因子和因子的交互效应的模型(我也不明白为什么只有全因子,没有全协变量。这个问题真的很难,所以别追问我啦。)第三个是设定/步进式。这个是自己手动设置交互项和主效应项的,而且还可以设置这个项是强制输入的还是逐步进入的。这个概念就不用再啰嗦了吧啊? 点击继续,打开统计量对话框,勾选个案处理摘要,伪R方,步骤摘要,模型拟合度信息,单元格可能性,分类表,拟合度,估计,似然比检验,继续。打开条件,全勾,继续,打开选项,勾选为分级强制条目和移除项目。打开保存,勾选包含协方差矩阵。确定(总算选完了)。 结果和二项logistic回归差不多,就是多了一个似然比检验,p值小于005认为变量有意义。然后我们直接看参数估计表。假设我们的因变量有n个类,那参数估计表会给出n-1组的截距,变量1,变量2。我们我们用Zm代表Exp(常量m+am1变量1+am2变量2+。。。),那么就有第m类情况发生的概率为Zn/1+Z2+Z3+……+Zn(如果我们以第一类为参考类别的话,我们就不会有关于第一类的参数,那么第一类就是默认的1,也就是说Z1为1)。 有序回归(累积logistic回归): 选择菜单分析——回归——有序,打开主面板。因变量,因子,协变量如何选取就不在重复了。选项对话框默认。打开输出对话框,勾选拟合度统计,摘要统计,参数估计,平行线检验,估计响应概率,实际类别概率,确定,位置对话框和上文的模型对话框类似,也不重复了。确定。 结果里边特有的一个表是平行线检验表。这个表的p值小于005则认为斜率系数对于不同的类别是不一样的。此外参数估计表得出的参数也有所不同。假设我们的因变量有四个水平,自变量有两个,那么参数估计表会给出三个阈值a1,a2,a3(也就是截距),两个自变量的参数m,n。计算方程时,首先算三个Link值,Link1=a1+mx1+nx2,Link2=a2+mx1+nx2,Link3=a3+mx1+nx2,(仅有截距不同)有了link值以后,p1=1/(1+exp(link1)),p1+p2=1/(1+exp(link2)),p1+p2+p3=1/(1+exp(link3)),p1+p2+p3+p4=1 通过上边的这几个方程就能计算出各自的概率了。 Logistic回归到这里基本就已经结束了。大家一定要记熟公式,弄混可就糟糕了。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/10282073.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-07
下一篇 2023-05-07

发表评论

登录后才能评论

评论列表(0条)

保存