SPSS AMOS 210是一款使用结构方程式,探索变量间的关系的软件
轻松地进行结构方程建模(SEM)
快速创建模型以检验变量之间的相互影响及其原因
比普通最客服乘回归和探索性因子分析更进一步
使用Amos 210进一步改进您的分析
无论您评估程序,还是开发行为态度模型,您都有可能遇到传统分析技术无能为力的情况。那么,如果您能使用一些复杂的,同时却不需冗长的编程或者学习过程的建模技术,情况会如何呢?
Amos软件和结构方程模型(SEM)助您成功
结构方程模型(SEM)是一种多元分析技术,它包含标准的方法,并在标准方法的基础上进行了扩展。这些方法包括回归技术、因子分析、方差分析和相关分析。Amos210让SEM变得容易。它拥有的直观的拖放式绘图工具,让您快速地以演示级路径图定制模型而无需编程。
使用 Amos210,让您比单独使用因子分析或回归分析能获得更精确、丰富的综合分析结果,Amos210 在构建方程式模型过程中的每一步骤均能提供图形环境,只要在 Amos 的调色板工具和模型评估中以鼠标轻点绘图工具便能指定或更换模型。通过快速的模型建立来检验您的变量是如何互相影响以及为何会发生此影响。
即使有缺失值也能达到精准
Amos 处理缺失值的最大特色就是拥有Full Information Maximum Likelihood ,即使资料不完整,Amos 也不会遗漏任何一个情况,并且会自动计算正确的标准误及适当的统计量,降低您的估算值偏差。
简易但功能强大
(1)AMOS具有的方差分析、协方差,假设检验等一系列基本分析方法。
(2)AMOS的贝叶斯和自抽样的方法应用,这个AMOS最具特色的方法,这个也算是比较前沿的应用,在一定程度上克服了大样本条件的限制,当样本低于200甚至是低于100时,贝叶斯方法的结果仍然比较稳定,尤其是MCMC的结果,该方法也可以提供路径分析间接效应的标准误,这在中介效应的使用方面特别有用,还可以观察估计参数的先验概率分布和事后概率分布,并进行人为设定。另外bootstrap也提供类似模拟的标准误,而且提供bootstrap的ADF、ML、GLS、SLS、ULS等参数估计的方法。另外也为时间序列数据提供自相关图用于侦察序列相关。
(3)AMOS提供方程检验的统计指标,不用说也是很丰富的,需要强调的是有些指标例如SRMR等需要自行设置才能提供,另外比较重要的指标如RMSEA的检验需要自己在figure caption里设置\pclose才能看到,请详情见手册。
(4)指定搜索(specification search),不知翻译的对不对,这个功能在探索变量间的关系上很好用,关系太多,也没什么假设,使用这个功能看看数据本身是什么关系。一般如果关系很复杂,数据量也很大,使用逐步法能节省很多时间。
(5)AMOS可以实现曲线增长模型,这种模型主要用于追踪数据,研究随时间变化的规律,AMOS这方面的发展很好,包括高阶曲线增长及其衍生的模型。不过同样在基于多层线性模型的曲线增长模型上无法实现。
(6)其他的模型例如混合建模,非递归模型等在AMOS里均有实现。同时AMOS高版本提供程序的透明性、可扩展性,与VB、SAS等软件提供接口,使得其程序编写上带来很大的便利,也拓展了应用范围,而且至20版以后AMOS在程序方面也得到了加强,例如程序编写、程序的生成等,其应用前景更加明朗。
技术说明
图形化用户界面
o 通过一个路径图浏览器显示文件夹中所有路径图的描述和缩略图
o 只需用鼠标点击就可选择编程选项
o 只需点击一下鼠标,就可以显示一张包括多个组或者模型的图表
o 查看数据文件内容
o 从数据集中把变量名拖到路径图中
建模能力
o 创建带有观测和隐性变量的结构方程模型(包括特例,如路径分析和纵向数据模型)
o 使用一到两种方法定制候选模型:
-指定每一个候选模型为对模型参数的等同约束的一个集合
-以探索性的方式使用SEM。Amos会尝试许多模型,使用Aikaike信息标准(AIC)和Bayesian信息标准(BIC)统计方法比较模型,并找出最有前途的模型。
o 进行证实性的因子分析:方差分解、变量误差、度量模型和隐性变量
建模
o 使用路径图来定制模型
o 使用绘图工具改变路径图,从而更改模型
o 在路径图上图形化地显示参数估计和拟合测量
o 在路径图上绘图的任何时刻显示自由度
分析能力和统计功能
o 使用完全信息最大似然估计得到更有效、更小偏倚的缺失值估计
o 输入参数值,观察在特定时刻的效应,以及使用模型库的离散函数值的效应
o 使用快速自举模拟,对于任意实验分布下的任何模型参数估计,找到近似分布,包括标准化系数
-评估符合Bollen和Stine自举方式的模型
-计算百分比区间以及偏差修正百分比区间
输出
o 使用有条件的导航帮助;使用增强的文本输出显示选项和表格格式选项
-使用导航面板快速定位并显示输出的各个部分
-将导航面板里的各部分和表格标题链接至右键帮助
-将数值(例如导航面板中显示的p值)链接至"use-it-in-a-sentence"帮助,得到有关数字含义的简单明了的英语说明
Amos 210-使用结构方程式,探索变量间的关系
"Amos 使用路径图来定制模型的方法完美自然…Amos是毫无疑问的赢家。"
-JJHox
《Amos,EQS and LISREL for Windows:a comparative review Structural Equation Modeling》
轻松地进行结构方程建模(SEM)
快速创建模型以检验变量之间的相互影响及其原因
比普通最小二乘回归和探索性因子分析更进一步
使用Amos 210进一步改进您的分析
无论您评估程序,还是开发行为态度模型,您都有可能遇到传统分析技术无能为力的情况。那么,如果您能使用一些复杂的,同时却不需冗长的编程或者学习过程的建模技术,情况会如何呢?
Amos软件和结构方程模型(SEM)助您成功
结构方程模型(SEM)是一种多元分析技术,它包含标准的方法,并在标准方法的基础上进行了扩展。这些方法包括回归技术、因子分析、方差分析和相关分析。Amos让SEM变得容易。它拥有的直观的拖放式绘图工具,让您快速地以演示级路径图定制模型而无需编程。
使用 Amos让您比单独使用因子分析或回归分析能获得更精确、丰富的综合分析结果,Amos 210在构建方程式模型过程中的每一步骤均能提供图形环境,只要在Amos的调色板工具和模型评估中以鼠标轻点绘图工具便能指定或更换模型。通过快速的模型建立来检验您的变量是如何互相影响以及为何会发生此影响。
系统需要 :
Microsoft Windows 98,Me,NT○R 40(SP6),2000或XP
18MB 硬盘空间
系统为Windows 98和Me至少需要128MB内存;系统为NT 40,2000和XP至少需要256M内存
Internet Explorer 6一般我们论文分析有很多个题项时,也就是多变量时,建立SEM结构化方程时 ,如果没有坚实的理论基础支撑,不清楚那些变量分为一个组时,题项对应哪个因子。一般可以先用EFA再在此基础上用 CFA。 (探索性因素分析用spss软件做,验证性因素分析用amos软件。) 探索性因子分析可以实现用少量因子反映大量问卷题目的信息,从而实现降低维度,便于分析的目的,并对因子命名用于后续分析。
前面的SPSS分析方法-因子分析中,也提到因子分析的前提条件 : KMO检验和巴特利特检验: 用于检查变量间的偏相关性,取值在0-1之间。KMO值越接近于1,因子分析效果就好。一般KMO值09以上极适合做因子分析,08以上适合做因子分析,07以上尚可,06以上勉强度可以,05以上不适合,05以下非常不适合。实际运用中,在07以上,效果比较好;在05以下时,不适合应用因子分析。
Bartlett 球形检验: P<005,不服从球形检验,应拒绝各权变量独立的假设,即变量间有较强相关;P>005时,服从球形检验,各变量相互独立,不能做因子分析。
接下来我们建立SEM模型。
一、画好路径图
打开AMOS,按照我们做EFA分好的题项或者根据理论分好的题项设计路径图。
二、读取数据文件
因为SPSS140版本以后已经将AMOS整合到SPSS内,所以一般我们数据以SPSS存储来分析比较兼容,不容易出问题。当然,在读取数据之前,我们要对数据的完整性问题做处理。
步骤:1、在工具箱中选择“Select data file(s)”图示,或者点菜单栏File-Data Files
2、勾选Files Name,然后选择分析的后缀名sav数据文件读入
3、可以看到读入文件成功,数据样本145个
4、点击OK,结束数据读入,也可点击View Data阅览数据
二、命名变量名称
前面我们建立了路径图,但其中的潜在变量和观察变量以及相关误差都还没命名,和关联数据。
步骤:
[if !supportLists]1 [endif]命名观察变量。点击工具箱中”List Variablles in data set”,按住鼠标左键把观察变量拖入方形框中。
2命名潜在变量。双击椭圆框框,打开Object Properties,在Variables Name窗口中输入潜在变量名。
3命名误差变量。自动命名:点击菜单Plugins-Name Unobserved Variables。手动命名,可以双击打开Object Properties,保持视窗开启,逐个命名。
4我们可以点击,调整一下观察变量的方框,美化路径图
5最后我们就得出一个完整模型了。
三、在路径中显示重要的参数。
步骤:1、点击Title图示,在绘图区点一下,输入参数的宏函数
2、常见的参数宏函数命令如下
四、存档,点击,保存文件
五、估算分析,输出结果
步骤:
[if !supportLists]1 [endif]点击Analysis properties图示,选择Output,勾选需要分析的系数、输入的模型拟合度和需报告的相关值。
2、点击Calculate estimates图示,产生估计值。
六、分析验证输出结果
1点击工具箱View Test图示,浏览输出估计值,输出报表内容。
2报表解读
3模型的总体
4非标准化回归系数
5标准化回归系数
6相关系数
7方差 :检查是否有违反估计
原文来自>
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)