问题二:在因子分析中,为什么要对因子进行旋转 主成分分析不能旋转,因子分析才能。很多论文这个方面都误用了 统计专业,为您服务
问题三:为什么在做SPSS因子分析时要进行不止一次的因子的抽取 一次抽取过后,不合适的项目要删除。之后要再抽取,再删除项目。这样就多次了。
当然,如果数据、结构够好,一次也可以探索成良好结构
问题四:spss因子分析为什么要对因子进行旋转? 因子旋转是为了更有利于用现实语言来描述所得因子。正常因子分析得出的因子可能逻辑意义不明显,理解起来很困难。但旋转之后就可能得到有逻辑意义的因子。
问题五:进行因子分析的前提条件是各变量之间应该怎么做 本来想给你截图的,可是传不上来,我就简单说一下哈。
首先你得进行一次预计算,选择菜单里分析――降维――因子分析,跳出主面板,把想分析的变量选到变量框里,然后点确定。这时候输出窗口里会只有一个或两个图表。其中有一个图表是主成分的方差贡献。这个图表里你要找到两个相邻的列(应该是第三列和第四列),其中前一个列指的是单个因子对方差的贡献率,后一个是因子累计贡献率。也就是说前一个列里边数值相加等于100,后一个列里边数值递增,最后一个等于100。假如前一个列里是60,30,10,那么后一列里就是60,90,100两个列之间有一个和的关系。找到这两个列以后,你要找使得累计贡献率达到百分之八十的那个数。这个表的第一列是1,2,3,等等,它代表第几个因子,比如3指的那行就包括第三个因子的方差贡献率,累积到第三个因子的方差贡献率这两个数据。你要找到累计到达百分之八十的那个因子是第几个因子,然后就按提取几个因子进行计算。
通过预计算知道了提取几个因子之后,就开始正式计算。再次打开因子分析的主面板,在最右边一共有五个选项,分别是描述,抽取,旋转,得分,选项。这五个在预计算里边没有用,但是现在要用了。点继续。
点击描述,在对话框里选上初始变量分析,kmo统计量及bartlett球形检验这两个选项,(注意,kmo和bartlett是一个选项,选项名就是很长)这一步是用来判断变量是否适于进行因子分析的。
点击抽取,对话框里最上边的方法就选主成分,分析里选上相关性矩阵,输出选上未旋转的因子解和碎石图两个选项,抽取里选择因子的固定数目,在要提取的因子后边填上你预计算里算出的因子数目。点继续。
旋转里边选最大方差法,输出旋转解。继续。
得分里边选保存为变量,方法为回归,显示因子得分系数矩阵也要打上勾。继续。
确定。
然后就可以分析结果了。
先看kmo和bartlett的结果,kmo统计量越接近1,变量相关性越强,因子分析效果越好。通常07以上为一般,05以下不能接受,就是不适合做因子分析。bartlett检验从检验相关矩阵出发,如果p值,就是sig,比较小的话,一般认为小于005,当然越小越好,就适于因子分析。
如果这两个检验都合格的话,才可以去写因子模型。
为了便于描述,假设我们有两个因子f1,f2,
旋转变换后的因子载荷矩阵会告诉你每个变量用因子表示的系数。比如变量x1=系数1f1+系数2f2,变量2以此类推。
因子得分系数矩阵会告诉你每个因子里各变量占得权重,比如f1=系数1x1+系数2x2+。。。
根据这个我们就能算出因子得分了。
因为之前选择了将因子保存为新变量,所以spss会直接保存两个因子得分为两个新变量,
然后我们不是有一个公式吗
总得分=因子1的方差贡献率因子1的得分+因子2的方差贡献率因子2的得分+
根据这个公式计算一下就可以了。
用spss或者Excel都可以。
希望能对你有帮助哦。
ppv课,大数据培训专家,最专业的大数据培训平台。为你提供最好的spss学习教程哦。
问题六:因子分析后得到的几个成分做回归分析,为什么还要考虑多重共线性 因为他不是用的因子得分,是线性计算的值
理论上用因子得分
问题七:请问 做相关分析前,一定要做因子分析吗?因子分析的目的是什么? 谢谢! 主成分分析和因子分析的区别 :jok:
1,因子分析中是把变量表示成各因子的线性组合,而主成分分析中则是把主成分表示成
个变量的线性组合。
2,主成分分析的重点在于解释个变量的总方差,而因子分析则把重点放在解释各变量之
间的协方差。
3,主成分分析中不需要有假设(assumptions),因子分析则需要一些假设。因子分析的假
设包括:各个共同因子之间不相关,特殊因子(specific factor)之间也不相关,共同
因子和特殊因子之间也不相关。
4,主成分分析中,当给定的协方差矩阵或者相关矩阵的特征值是唯一的时候,的主成分
一般是独特的;而因子分析中因子不是独特的,可以旋转得到不到的因子。
5,在因子分析中,因子个数需要分析者指定(spss根据一定的条件自动设定,只要是特
征值大于1的因子进入分析),而指
定的因子数量不同而结果不同。在主成分分析中,成分的数量是一定的,一般有几个变量
就有几个主成分。
和主成分分析相比,由于因子分析可以使用旋转技术帮助解释因子,在解释方面更加有
优势。大致说来,当需要寻找潜在的因子,并对这些因子进行解释的时候,更加倾向于
使用因子分析,并且借助旋转技术帮助更好解释。而如果想把现有的变量变成少数几个
新的变量(新的变量几乎带有原来所有变量的信息)来进入后续的分析,则可以使用主
成分分析。当然,这中情况也可以使用因子得分做到。所以这中区分不是绝对的。
总得来说,主成分分析主要是作为一种探索性的技术,在分析者进行多元数据分析之前
,用主成分分析来分析数据,让自己对数据有一个大致的了解是非常重要的。主成分分
析一般很少单独使用:a,了解数据。(screening the data),b,和cluster ysis一
起使用,c,和判别分析一起使用,比如当变量很多,个案数不多,直接使用判别分析可
能无解,这时候可以使用主成份发对变量简化。(reduce dimensionality)d,在多元回
归中,主成分分析可以帮助判断是否存在共线性(条件指数),还可以用来处理共线性
。
在算法上,主成分分析和因子分析很类似,不过,在因子分析中所采用的协方差矩阵的
对角元素不在是变量的方差,而是和变量对应的共同度(变量方差中被各因子所解释的
问题八:用SPSS作因子分析,数据为什么要标准化 不标准化 可能会由于不同列的数据本身的大小差异影响结果
比如一列重量数据的范围可能都是几g,数据都是个位数,然后一列数据的计量单位是m,但实际值都是00001起的,因为主成份分析时,只考虑数据,未把计量单位考虑进去,这样两列数据的大小差异很大,会影响结果,因此对数据进行一定的标准化处理,使所有列的数据范围都在正负1之间,这样可以避免数据差异的影响
问题九:实证一定要进行因子分析吗 实证是相对于理论而言的,凡是涉及到数据和统计分析的,都可以叫实证,而因子分析只是众多统计分析方法中的一个而已,自然就不是必须的了。(南心网SPSS实证分析)
问题十:因子分析后为什么要进行回归分析 用因子得分FAC1-1做回归,那个因子载荷阵是原变量与因子的相关系数,你可以参考网上的文献,另外新生成的因子是不相关的,不用做相关分析了
因子分析的原理如下:
在对某一个问题进行论证分析时,采集大量多变量的数据能为我们的研究分析提供更为丰富的信息和增加分析的精确度。然而,这种方法不仅需要巨大的工作量,并且可能会因为变量之间存在相关性而增加了我们研究问题的复杂性。
因子分析法就是从研究变量内部相关的依赖关系出发,把一些具有错综复杂关系的变量归结为少数几个综合因子的一种多变量统计分析方法。这样我们就可以对原始的数据进行分类归并,将相关比较密切的变量分别归类,归出多个综合指标。
这些综合指标互不相关,即它们所综合的信息互相不重叠。这些综合指标就称为因子或公共因子。因子分析法的基本思想是将观测变量进行分类,将相关性较高,即联系比较紧密的分在同一类中,而不同类变量之间的相关性则较低,那么每一类变量实际上就代表了一个基本结构。
即公共因子。对于所研究的问题就是试图用最少个数的不可测的所谓公共因子的线性函数与特殊因子之和来描述原来观测的每一分量。这样,就能相对容易地以较少的几个因子反映原资料的大部分信息,从而达到浓缩数据,以小见大,抓住问题本质和核心的目的。
隐性变量
因子分析的主要目的是用来描述隐藏在一组测量到的变量中的一些更基本的,但又无法直接测量到的隐性变量。比如,如果要测量学生的学习积极性,课堂中的积极参与,作业完成情况,以及课外阅读时间可以用来反应积极性。
而学习成绩可以用期中,期末成绩来反应。在这里,学习积极性与学习成绩是无法直接用一个测度测准,它们必须用一组测度方法来测量,然后把测量结果结合起来,才能更准确地把握。换句话说,这些变量无法直接测量。
1主成分分析
主成分分析主要是一种探索性的技术,在分析者进行多元数据分析之前,用他来分析数据,让自己对数据有一个大致的了解,这是非常有必要的。主成分分析一般很少单独使用:a、了解数据。(screening the data),b、和cluster analysis(聚类分析)一起使用,c、和判别分析一起使用,比如当变量很多,个案数不多,直接使用判别分析可能无解,这时候可以使用主成分对变量简化(reduce dimensionality),d、在多元回归中,主成分分析可以帮助判断是否存在共线性(条件指数),还可以用来处理共线性。
1、因子分析中是把变量表示成各因子的线性组合,而主成分分析中则是把主成分表示成各变量的线性组合。
2、主成分分析的重点在于解释各变量的总方差,而因子分析则把重点放在解释各变量之间的协方差。
3、主成分分析中不需要有假设(assumptions),因子分析则需要一些假设。因子分析的假设包括:各个共同因子之间不相关,特殊因子(specific factor)之间也不相关,共同因子和特殊因子之间也不相关。
4、主成分分析中,当给定的协方差矩阵或者相关矩阵的特征值是唯一的时候,主成分一般是独特的;而因子分析中因子不是独特的,可以旋转得到不同的因子。
5、在因子分析中,因子个数需要分析者指定(spss根据一定的条件自动设定,只要是特征值大于1的因子进入分析),而指定的因子数量不同而结果不同。在主成分分析中,成分的数量是一定的,一般有几个变量就有几个主成分。和主成分分析相比,由于因子分析可以使用旋转技术帮助解释因子,在解释方面更加有优势。大致说来,当需要寻找潜在的因子,并对这些因子进行解释的时候,更加倾向于使用因子分析,并且借助旋转技术帮助更好解释。而如果想把现有的变量变成少数几个新的变量(新的变量几乎带有原来所有变量的信息)来进入后续的分析,则可以使用主成分分析。当然,这种情况也可以使用因子得分做到。所以这种区分不是绝对的。
在算法上,主成分分析和因子分析很类似,不过在因子分析中所采用的协方差矩阵的对角元素不再是变量的方差,而是和变量对应的共同度(变量方差中被各因子所解释的部分)。
2聚类分析(Cluster Analysis)
聚类分析是直接比较各事物之间的性质,将性质相近的归为一类,将性质差别较大的归入不同的类的分析技术。
在市场研究领域,聚类分析主要应用方面是帮助我们寻找目标消费群体,运用这项研究技术,我们可以划分出产品的细分市场,并且可以描述出各细分市场的人群特征,以便于客户可以有针对性的对目标消费群体施加影响,合理地开展工作。
3判别分析(Discriminatory Analysis)
判别分析(Discriminatory Analysis)的任务是根据已掌握的1批分类明确的样品,建立较好的判别函数,使产生错判的事例最少,进而对给定的1个新样品,判断它来自哪个总体。根据资料的性质,分为定性资料的判别分析和定量资料的判别分析;采用不同的判别准则,又有费歇、贝叶斯、距离等判别方法。
费歇(FISHER)判别思想是投影,使多维问题简化为一维问题来处理。选择一个适当的投影轴,使所有的样品点都投影到这个轴上得到一个投影值。对这个投影轴的方向的要求是:使每一类内的投影值所形成的类内离差尽可能小,而不同类间的投影值所形成的类间离差尽可能大。贝叶斯(BAYES)判别思想是根据先验概率求出后验概率,并依据后验概率分布作出统计推断。所谓先验概率,就是用概率来描述人们事先对所研究的对象的认识的程度;所谓后验概率,就是根据具体资料、先验概率、特定的判别规则所计算出来的概率。它是对先验概率修正后的结果。
距离判别思想是根据各样品与各母体之间的距离远近作出判别。即根据资料建立关于各母体的距离判别函数式,将各样品数据逐一代入计算,得出各样品与各母体之间的距离值,判样品属于距离值最小的那个母体。
4对应分析(Correspondence Analysis)
对应分析是一种用来研究变量与变量之间联系紧密程度的研究技术。
运用这种研究技术,我们可以获取有关消费者对产品品牌定位方面的图形,从而帮助您及时调整营销策略,以便使产品品牌在消费者中能树立起正确的形象。
这种研究技术还可以用于检验广告或市场推广活动的效果,我们可以通过对比广告播出前或市场推广活动前与广告播出后或市场推广活动后消费者对产品的不同认知图来看出广告或市场推广活动是否成功的向消费者传达了需要传达的信息。
5典型相关分析
典型相关分析是分析两组随机变量间线性密切程度的统计方法,是两变量间线性相关分析的拓广。各组随机变量中既可有定量随机变量,也可有定性随机变量(分析时须F6说明为定性变量)。本法还可以用于分析高维列联表各边际变量的线性关系。
注意
1.严格地说,一个典型相关系数描述的只是一对典型变量之间的相关,而不是两个变量组之间的相关。而各对典型变量之间构成的多维典型相关才共同揭示了两个观测变量组之间的相关形式。
2.典型相关模型的基本假设和数据要求
要求两组变量之间为线性关系,即每对典型变量之间为线性关系;
每个典型变量与本组所有观测变量的关系也是线性关系。如果不是线性关系,可先线性化:如经济水平和收入水平与其他一些社会发展水之间并不是线性关系,可先取对数。即log经济水平,log收入水平。
3.典型相关模型的基本假设和数据要求
所有观测变量为定量数据。同时也可将定性数据按照一定形式设为虚拟变量后,再放入典型相关模型中进行分析。
6多维尺度分析(Multi-dimension Analysis)
多维尺度分析(Multi-dimension Analysis) 是市场研究的一种有力手段,它可以通过低维空间(通常是二维空间)展示多个研究对象(比如品牌)之间的联系,利用平面距离来反映研究对象之间的相似程度。由于多维尺度分析法通常是基于研究对象之间的相似性(距离)的,只要获得了两个研究对象之间的距离矩阵,我们就可以通过相应统计软件做出他们的相似性知觉图。
在实际应用中,距离矩阵的获得主要有两种方法:一种是采用直接的相似性评价,先将所有评价对象进行两两组合,然后要求被访者所有的这些组合间进行直接相似性评价,这种方法我们称之为直接评价法;另一种为间接评价法,由研究人员根据事先经验,找出影响人们评价研究对象相似性的主要属性,然后对每个研究对象,让被访者对这些属性进行逐一评价,最后将所有属性作为多维空间的坐标,通过距离变换计算对象之间的距离。
多维尺度分析的主要思路是利用对被访者对研究对象的分组,来反映被访者对研究对象相似性的感知,这种方法具有一定直观合理性。同时该方法实施方便,调查中被访者负担较小,很容易得到理解接受。当然,该方法的不足之处是牺牲了个体距离矩阵,由于每个被访者个体的距离矩阵只包含1与0两种取值,相对较为粗糙,个体距离矩阵的分析显得比较勉强。但这一点是完全可以接受的,因为对大多数研究而言,我们并不需要知道每一个体的空间知觉图。
多元统计分析是统计学中内容十分丰富、应用范围极为广泛的一个分支。在自然科学和社会科学的许多学科中,研究者都有可能需要分析处理有多个变量的数据的问题。能否从表面上看起来杂乱无章的数据中发现和提炼出规律性的结论,不仅对所研究的专业领域要有很好的训练,而且要掌握必要的统计分析工具。对实际领域中的研究者和高等院校的研究生来说,要学习掌握多元统计分析的各种模型和方法,手头有一本好的、有长久价值的参考书是非常必要的。这样一本书应该满足以下条件:首先,它应该是“浅入深出”的,也就是说,既可供初学者入门,又能使有较深基础的人受益。其次,它应该是既侧重于应用,又兼顾必要的推理论证,使学习者既能学到“如何”做,而且在一定程度上了解“为什么”这样做。最后,它应该是内涵丰富、全面的,不仅要基本包括各种在实际中常用的多元统计分析方法,而且还要对现代统计学的最新思想和进展有所介绍、交代。
主成分分析通过线性组合将原变量综合成几个主成分,用较少的综合指标来代替原来较多的指标(变量)。在多变量分析中,某些变量间往往存在相关性。是什么原因使变量间有关联呢?是否存在不能直接观测到的、但影响可观测变量变化的公共因子?因子分析法(Factor Analysis)就是寻找这些公共因子的模型分析方法,它是在主成分的基础上构筑若干意义较为明确的公因子,以它们为框架分解原变量,以此考察原变量间的联系与区别。
例如,随着年龄的增长,儿童的身高、体重会随着变化,具有一定的相关性,身高和体重之间为何会有相关性呢?因为存在着一个同时支配或影响着身高与体重的生长因子。那么,我们能否通过对多个变量的相关系数矩阵的研究,找出同时影响或支配所有变量的共性因子呢?因子分析就是从大量的数据中“由表及里”、“去粗取精”,寻找影响或支配变量的多变量统计方法。
可以说,因子分析是主成分分析的推广,也是一种把多个变量化为少数几个综合变量的多变量分析方法,其目的是用有限个不可观测的隐变量来解释原始变量之间的相关关系。
因子分析主要用于:1、减少分析变量个数;2、通过对变量间相关关系探测,将原始变量进行分类。即将相关性高的变量分为一组,用共性因子代替该组变量。
如果你执意要进行共线性检验,一个不太完美的方法是做一个相关矩阵,相关性显著并且其相关数值接近1,那就是共线性了。因变量和自变量来自于理论假设,而不是统计结果。同一个因子分析结果,自变量和因变量可以互换,关键是您假设哪个变量影响另一个变量,被影响者是因变量,影响者就是因变量。(南心网 SPSS因子分析)
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)