数学建模中拟合的目地和难点分别是什么?拿到数据应该如何思考?

数学建模中拟合的目地和难点分别是什么?拿到数据应该如何思考?,第1张

拟合的目的,简单的说有两点,一是发现数据点的规律,二是用规律来需找需要的数据。比如说我们得到了1 2 3 4 5 6 7 8 9对应的数据点,我们可以通过拟合找到九个点的规律是什么,用一个函数反映出来,自然的,想知道85对应的数值,只需将85代入到拟合的函数即可。
一般来说,拟合算法都有不足,但是拟合的难点不是我们考虑的重点,我们不需要关心太多的数据处理方法与技巧,因为EXCEL和MATLAB等软件已经把它做得相当好了,我们选对参数和方法就足够了。因此用好软件是关键。

数学建模的主要步骤:
第一、 模型准备
首先要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。
第二、 模型假设
根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建
模至关重要的一步。如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以
高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应
尽量使问题线性化、均匀化。
第三、 模型构成
根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间
的等式关系或其它数学结构。这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老
人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱
大国,别有洞天。不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工
具愈简单愈有价值。
第四、模型求解
可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,
特别是计算机技术。一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计
算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重。
第五、模型分析
对模型解答进行数学上的分析。"横看成岭侧成峰,远近高低各不quot;,能否对模型结果作
出细致精当的分析,决定了你的模型能否达到更高的档次。还要记住,不论那种情况都需进行误差
分析,数据稳定性分析。
数学建模采用的主要方法有:
(一)、机理分析法:根据对客观事物特性的认识从基本物理定律以及系统的结构数据来推导出模
型。
1、比例分析法:建立变量之间函数关系的最基本最常用的方法。
2、代数方法:求解离散问题(离散的数据、符号、图形)的主要方法。
3、逻辑方法:是数学理论研究的重要方法,对社会学和经济学等领域的实际问题,在决策,对策
等学科中得到广泛应用。
4、常微分方程:解决两个变量之间的变化规律,关键是建立“瞬时变化率”的表达式。
5、偏微分方程:解决因变量与两个以上自变量之间的变化规律。
(二)、数据分析法:通过对量测数据的统计分析,找出与数据拟合最好的模型
1、回归分析法:用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由
于处理的是静态的独立数据,故称为数理统计方法。
2、时序分析法:处理的是动态的相关数据,又称为过程统计方法。
3、回归分析法:用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由
于处理的是静态的独立数据,故称为数理统计方法。
4、时序分析法:处理的是动态的相关数据,又称为过程统计方法。
(三)、仿真和其他方法
1、计算机仿真(模拟):实质上是统计估计方法,等效于抽样试验。①离散系统仿真,有一组状
态变量。②连续系统仿真,有解析表达式或系统结构图。
2、因子试验法:在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构

3、人工现实法:基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的
可能变化,人为地组成一个系统。

所谓提炼数学模型,就是运用科学抽象法,把复杂的研究对象转化为数学问题,经合理简化后,建立起揭示研究对象定量的规律性的数学关系式(或方程式)。这既是数学方法中最关键的一步,也是最困难的一步。提炼数学模型,一般采用以下六个步骤完成:
第一步:根据研究对象的特点,确定研究对象属哪类自然事物或自然现象,从而确定使用何种数学方法与建立何种数学模型。即首先确定对象与应该使用的数学模型的类别归属问题,是属于“必然”类,还是“随机”类;是“突变”类,还是“模糊”类。
第二步:确定几个基本量和基本的科学概念,用以反映研究对象的状态。这需要根据已有的科学理论或假说及实验信息资料的分析确定。例如在力学系统的研究中,首先确定的摹本物理量是质主(m)、速度(v)、加速度(α)、时间(t)、位矢(r)等。必须注意确定的基本量不能过多,否则未知数过多,难以简化成可能数学模型,因此必须诜择出实质性、关键性物理量才行。
第三步:抓住主要矛盾进行科学抽象。现实研究对象是复杂的,多种因素混在一起,因此,必须变复杂的研究对象为简单和理想化的研究对象,做到这一点相当困难,关键是分清主次。如何分清主次只能具体问题具体分析,但也有两条基本原则:一是所建数学模型一定是可能的,至少可给出近似解;二是近似解的误差不能超过实际问题所允许的误差范围。
第四步:对简化后的基本量进行标定,给出它们的科学内涵。即标明哪些是常量,哪些是已知量,哪些是待求量,哪些是矢量,哪些是标量,这些量的物理含义是什么
第五步:按数学模型求出结果。
第六步:验证数学模型。验证时可根据情况对模型进行修正,使其符合程度更高,当然这以求原模型与实际情况基本相符为原则

在进行三角形网格划分时,可能会出现无法建立模型的情况。这种情况通常是由于以下一些常见原因造成的:
1 几何形状不合适 - 准确的三角形网格构建需要良好的几何形状,如果模型模糊不清、缺失细节或存在锐利边缘等情况,都可能影响三角网格的构建。建议检查模型的几何形状,并根据实际情况进行修复或调整。
2 边界条件不合适 - 在构建三角形网格时,边界条件对于三角形尺寸和形状的控制至关重要。如果边界条件设置不合适,可能会导致三角形大小或形状不均匀,从而造成网格划分失败。建议更改边界条件并重新尝试构建三角形网格。
3 网格参数设置不合适 - 构建三角形网格需要设置各种网格参数,包括网格密度、曲率半径、最大三角形尺寸等。如果这些参数设置不合适,可能会导致三角形网格划分失败。建议根据实际情况优化网格参数设置,并重新尝试构建三角形网格。
总之,构建三角形网格需要仔细地进行几何形状、边界条件和网格参数的优化和调整。如果您仍然无法建立模型,请参考相关文档或联系技术支持获取帮助。

问题一:怎样学习数学建模 先学习高等数学,然后是运筹学,概率论与数理统计,数学建模用到的软件一般是LINGO,MATLAB,SPSS,你可以经常上建模的网站上面看看,这方面的网站数学中国不错,还有其他的,你可以自己找一下,上面有很多高手,有什么不懂的也都可以问,而且那里的资料也很多,你可以下载来看看。

问题二:数学建模怎么做啊? 刚参加完九月份的全国大学生数学建模竞赛。一份基本的的数学建模论文要包含以下几个方面:
摘要,问题的背景与提出,问题的分析,模型的假设,符号说明,模型的建立与求解,模型的评价与推广,参考文献。
正规的数学建模论文篇幅一般在20页以上。考虑到你读初三,老师的要求不会这么高,而且你的能力应该还有所欠缺。我的建议为你按照自己实际情况选择一个有一定挑战性的题目,题目的性质类似于应用题,但又和普通的应用题不同,可以没有确定答案,针对问题本身做一些分析和探讨,最好能和实际相结合。
要注意的是假设要合理,要有数学模型(包括一些方程,不等式等),要有分析思路,并且要对自己建立的模型进行优缺点评价,最好能做相应推广。

问题三:数学建模怎么学习? 可以啊!填报名表时写上三个人的名字就可以了,自己交报名费,什么指导老师之类的都是虚的,今年的比赛时间是9月9号8:00----9月12号8:00,早点准备哦!

问题四:1什么是数学模型?数学建模的一般步骤是什么? 2数学建模需要具备哪些能力和知识? 答的好悬赏加 100分 数学建模是利用数学方法解决实际问题的一种实践即通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解
数学建模将各种知识综合应用于解决实际问题中,是培养和提高学生应用所学知识分析问题、解决问题的能力的必备手段之一
数学建模的一般方法和步骤
建立数学模型的方法和步骤并没有一定的模式,但一个理想的模型应能反映系统的全部重要特征:模型的可靠性和模型的使用性建模的一般方法:
机理分析:根据对现实对象特性的认识,分析其因果关系,找出反映内部机理的规律,所建立的模型常有明确的物理或现实意义
测试分析方法:将研究对象视为一个“黑箱”系统,内部机理无法直接寻求,通过测量系统的输入输出数据,并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个数据拟合得最好的模型测试分析方法也叫做系统辩识
将这两种方法结合起来使用,即用机理分析方法建立模型的结构,用系统测试方法来确定模型的参数,也是常用的建模方法
在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定机理分析法建模的具体步骤大致如下:
1、 实际问题通过抽象、简化、假设,确定变量、参数;
2、 建立数学模型并数学、数值地求解、确定参数;
3、 用实际问题的实测数据等来检验该数学模型;
4、 符合实际,交付使用,从而可产生经济、社会效益;不符合实际,重新建模
数学模型的分类:
1、 按研究方法和对象的数学特征分:初等模型、几何模型、优化模型、微分方程模型、图论模型、逻辑模型、稳定性模型、统计模型等
2、 按研究对象的实际领域(或所属学科)分:人口模型、交通模型、环境模型、生态模型、生理模型、城镇规划模型、水资源模型、污染模型、经济模型、社会模型等
数学建模需要丰富的数学知识,涉及到高等数学,离散数学,线性代数,概率统计,复变函数等等基本的数学知识同时,还要有广泛的兴趣,较强的逻辑思维能力,以及语言表达能力等等
参加数学建模竞赛需知道的内容
一、全国大学生数学建模竞赛
二、数学建模的方法及一般步骤
三、重要的数学模型及相应案例分析
1、线性规划模型及经济模型案例分析
2、层次分析模型及管理模型案例分析
3、统计回归模型及案例分析
4、图论模型及案例分析
5、微分方程模型及案例分析
四、相关软件
1、Matlab软件及编程;2、Lingo软件;3、Lindo软件。
五、数模十大常用算法
1 蒙特卡罗算法。2 数据拟合、参数估计、插值等数据处理算法。3 线性规划、整数规划、多元规划、二次规划等规划类算法。4 图论算法。5 动态规划、回溯搜索、分治算法、分支定界等计算机算法。6 最优化理论的三大非经典算法。7 网格算法和穷举法。8 一些连续数据离散化方法。9 数值分析算法。10 图象处理算法。
六、如何查阅资料
七、如何写作论文
八、如何组织队伍:团队精神,配合良好,不断的提出问题和解决问题。
九、如何才能获奖:比较完整,有几处创新点。
十、如何信息处理:WORD、LaTeX,飞秋、QQ。
其实主要看下例子就可以了,知道一些基本的模型,我这里也有很多例子,各个学校的讲座都有要的话直接向我要>>

问题五:学习数模需要具备哪些知识 参加数学建模竞赛需知道的内容
一、全国大学生数学建模竞赛
二、数学建模的方法及一般步骤
三、重要的数学模型及相应案例分析
1、线性规划模型及经济模型案例分析
2、层次分析模型及管理模型案例分析
3、统计回归模型及案例分析
4、图论模型及案例分析
5、微分方程模型及案例分析
四、相关软件
1、Matlab软件及编程;2、Lingo软件;3、Lindo软件。
五、数模十大常用算法
1 蒙特卡罗算法。2 数据拟合、参数估计、插值等数据处理算法。3 线性规划、整数规划、多元规划、二次规划等规划类算法。4 图论算法。5 动态规划、回溯搜索、分治算法、分支定界等计算机算法。6 最优化理论的三大非经典算法。7 网格算法和穷举法。8 一些连续数据离散化方法。9 数值分析算法。10 图象处理算法。
六、如何查阅资料
七、如何写作论文
八、如何组织队伍:团队精神,配合良好,不断的提出问题和解决问题。
九、如何才能获奖:比较完整,有几处创新点。
十、如何信息处理:WORD、LaTeX,飞秋、QQ。
其实主要看下例子就可以了,知道一些基本的模型,我这里也有很多例子,各个学校的讲座都有要的话直接向我要

问题六:数学建模是什么 数学建模的详细定义网上多的我就不阐述了,说一点其他的~~
数学的主要发展方向是数学结合计算盯。运用数学的算法结合计算机技术解决实际问题,将来你会比单纯学计算机的水平高出一个档次,因为你的算法比他们的先进。而这也就是数学建模竞赛的主要考察的。
数模比赛的含金量也是比较高的,你参加比赛得了名次,完全可以证明你是有一定实力的~~
你担心数学成绩不好,其实是没有必要的,我参加过几次比赛,用的数学知识并没有很高深,高中数学也能解决很多问题了,主要就是优化,模拟,我觉得考验个人思维能力多一点,况且数学、计算机、写作三个方面呢,你只要有一方面特长就可以了~~
如果你去参加比赛,真的会给你很多收获,学到很多新知识不谈,还会让你了解原来学的东西可以这么用在生活中,会提起学习的兴趣,真的,我强烈建议你去学一些~~参加比赛~~如果还有其他问题你可以问的呵呵~~~我建模和写作都弄过,编程差点~~

问题七:学习数学建模看哪本书最好 数学建模感想
纪念逝去的大学数学建模:两次校赛,两次国赛,两次美赛,一次电工杯。从大一下学期组队到现在,大三下学期,时间飞逝,我的大学建模生涯也告一段落。感谢建模路上帮助过我的学长和学姐们,滴水之恩当涌泉相报,写下这篇感想,希望可以给学弟学妹们一丝启发,也就完成我的想法了。拙劣的文笔,也不知道写些啥,按顺序随便写写吧。
我是怎么选择建模的:
大一上,第一次听到数学建模其实是大一上学期,not大一下学期。某次浏览网页偶然发现的,源于从小对数学,哲学以及历史的崇敬吧(虽然大学没敢选择其中任何一个专业,尤其是数学和哲学,怕太难了,学不好),我就坚定了学习数学建模的想法。通过翻阅学校发的学生手册还是神马的资料,发现我们学校有数学建模竞赛的。鉴于大一上啥数学知识都没有,也就没开始准备,把侧重点放在找队友上。 一次打乒乓球,认识了两位信电帅哥,以后也会一起打球。其中一位(M)很有学霸潜质,后来期末考试后,我打听了他的高数成绩,果然的杠杠滴,就试探性的问了下,要不要一起参加建模,嗯,成功!
第二位队友是在大一上学期认识的(向她请教了很多关于转专业的事情),但是是第二学期找她组队的。老样子,打听成绩,一打听吓一跳,是英语超好,微积分接近满分的女生F(鄙人第二学期转入了她的学院)。果断发送邀请,是否愿意一起组队,嗯,成功。
关于找队友:在信息不对称的情况下,优先考虑三人的专业搭配,比如或信电的小伙伴负责编程和理工科题建模,经济金融统计负责论文和统计建模,数学计算专业的全方位建模以及帮忙论文,个人感觉这样子比较好。由于建模粗略地可以分为建模,编程,论文,三块,整体上是一人负责一块的,但是绝对不能走极端,每个人就单单的负责一块,这样子的组合缺乏沟通和互动。应该要在培训中磨合,结合每个人的个人特点。主要负责哪几块,辅助哪几块。
接下来就到了第一次校赛了:第一次还是挺激动的,因为之前问了几个学长学姐说,建模都是要通宵的,于是我们也做好了通宵的准备。第一次拿到的题目是关于一个单位不同工作部门不同饮食习惯的人,健康水平的关系。 后来回顾过来,这其实是一个比较简单的统计分析题。但是想当年可没有这等觉悟,做题全靠office,对着题目想半天也不知道该怎么做。做的过程很痛苦,但是也很兴奋,校赛三等奖的结果证明了光有一股热情是不行的,需要恶补大量知识。
推荐新手入门书目:
数学模型(姜启源、谢金星)
数学建模方法与分析(新西兰)MarkM.Meerschaert
第一本是姜老先生写的,很适合新手,在内容编排上也是国产风格,按模型知识点分类,一块一块讲,面面俱到。第二本是新西兰的,我是大二的时候看这本书的,只看了前面一部分。发现这本书挺适合新手,它是典型的外国教材风格,从一个模型例子开始,娓娓道来,跟你讲述数学建模的方方面面,其中反复强调的一个数学建模五步法,后来细细体会起来的确很有道理,看完大部分这本书的内容,就可以体会并应用这个方法了。(第一次校赛,就是因为五步法的第一步,都没有做到)。对了,还有老丁推荐的一本,美利坚合众国数学建模竞赛委员会主席Giordano写的A first course in mathematic modeling,有姜启源等翻译的中文版,but我没能在图书馆借到,所以没看过,大家有机会可以看看。
怎么建模
第一次国赛前的放假开始学校培训,我提前借了一大堆书,把卡都借满了。第一次国赛前的那次培训,对我而言,这段时期是收获最大的时期,比其他任何时间段都来得大。
这段时间内,我们三个人都很辛苦。白天培训要学习很多知识,完了只能休息>>

     我在大二的时候就和室友一起参加过全国大学生数学建模竞赛,学校里也上过这方面的专业课,可以说对此有点自己的见解和建议。下面我想分享一下自己当时做的一些准备供你参考。

首先,肯定要学习数学模型方面的知识。

     数学建模,顾名思义就是建立数学模型,需要你去了解一下常用的数学模型。有些同学可能会疑问,数学还有什么模型呢?不就是套套公式吗。其实不然,对于国赛,最常用的莫过于概率论与数理统计了。

     我当时的做法是,对于所有常用的模型(可以从历年题目中找找规律),了解一下它们的用法和适用范围,这样比赛的时候你就知道能用什么模型去套,否则很容易走入死胡同。我当时看的书是《数学建模算法与应用》,毕竟数模也是跟编程、算法等离不开的。

其次,一定要挑选合适,最好是专业互补的队友。

     团队合作对于你的成绩也是有很大影响的。一方面,是性格上合得来,否则过程中会出现很多矛盾,切忌找那些混子队友,特别是那些出工不出力,只想混奖的。其次我认为,大家最好是专业互补的,比如你是数院我是学计算机的,这样你可以负责建模,我可以负责算法的实现,这样可以大大提高效率,而不用花大时间去学习新的知识。

     我当时就拉上了我的室友,他也是有过ACM竞赛经历的,对于算法以及编程这块完全没问题。之后我们还拉了一个数院的来,毕竟他学过数学建模的专业课,有过大概的了解。

最后,我认为提早学习相关软件是必要的。

     尤其是如果你之前没接触过Matlab,Matlab的循环、条件、判断语句的结构以及赋值等运算,还是需要提前熟练掌握的,而不是一边比赛一边去学新知识。

对于学计科的我,我认为如果你学过C语言或者任何一门程序设计语言,那么Matlab的上手是很快的。如果你不知道一个函数的用处,直接在命令窗中输入:help+该函数名称即可返回使用说明。

     当然,如果你学有余力的话,可以去学SPSS这种专业的统计软件,或者像Visio这样的绘图软件,在统计或者绘图等方面,用起来更加方面,图案也更加精美。

     总而言之,对于大学的数学建模竞赛,还是需要好好准备的,无论是数学的专业知识还是算法的设计实现。如果能找到合适的队友,那么合作起来还是很轻松的,希望你能得到一个好成绩!


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/10340601.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-07
下一篇 2023-05-07

发表评论

登录后才能评论

评论列表(0条)

保存