在LTE中,OFDM是什么,能不能说得通俗点

在LTE中,OFDM是什么,能不能说得通俗点,第1张

这个技术说的很玄乎,其实在wimax和wifi里早就利用了,OFDM并不比CDMA的频谱利用率更高,但是它的优势是大宽带的支持更简单更合理,而且配合mimo更好。
举个例子,CDMA是一个班级,又说中文又说英文,如果大家音量控制的好的话,虽然是一个频率但是可以达到互不干扰,所以125m的带宽可以实现49m 的速率。而OFDMA则可以想象成高架桥,10米宽的路,上面架设一个5米宽的高架,实际上道路的通行面积就是15米,这样虽然水平路面不增加但 是可以通行的车辆增加了。而OFDM也是利用这个技术,利用傅里叶快速变换导入正交序列,相当于在有限的带宽里架设了N个高架桥,目前是一个ofdm信号 的前半个频率和上一个频点的信号复用,后半个频率和后一个频点的信号复用。
那信号频率重叠了怎么区分,很简单,OFDM,O就是正交的意思,正交就是能保证唯一性,举例子,A和B重叠,但是Aa+Bb,a和b是不同的正交序列,如果我要从同一个频率中只获取A,那么通过计算,(Aa+Bb)a=Aaa+Bba=A+0=A(因为正交,aa=1,ab=0)。所以OFDMA是允许频率重叠的,甚至理论上可以重叠到无限,但是为了增加解调的容易性,目前LTE支持OFDM重叠波长的一半。
关注w京城翼网感知x,获取更多信息。

MB-OFDM将频段分成多个(528 )MHz的子频带,每个子频带采用( 时频交织 )方式,数据在每个子带上传输
多带正交频分复用 (MB一OFDM)超宽带系统是将31一106GHz的可用频谱划分为13个子频带,每个子频带的宽度为528MHz, 在每个子频带上采用OFDM技术。每个子频带使用128 个子载波, 这128个子载波分为10个数据子载波 ,12个导频子载波及16个空子载波。
系统采用时频交织的方式,在每个子频带中传输OFDM信号。MB一OFDM采用卷积编码形式, 编码速率可变 ,不同的编码速 率和 扩频因子决定了系统不同的信息速率, 信息速率从5Mbps到480Mbps ; 采用正交相移控 ( QSPK )调制方式
原文:调制载波的超宽带技术及其实现方式 (cnkinet)

OFDM是一种无线环境下的高速传输技术。无线信道的频率响应曲线大多是非平坦的,而OFDM技术的主要思想就是在频域内将给定信道分成许多正交子信道,在每个子信道上使用一个子载波进行调制,并且各子载波并行传输。这样,尽管总的信道是非平坦的,具有频率选择性,但是每个子信道是相对平坦的,在每个子信道上进行的是窄带传输,信号带宽小于信道的相应带宽,因此就可以大大消除信号波形间的干扰。由于在OFDM系统中各个子信道的载波相互正交,它们的频谱是相互重叠的,这样不但减小了子载波间的相互干扰,同时又提高了频谱利用率。OFDM技术属于多载波调制(Multi-CarrierModulation,MCM)技术。有些文献上将OFDM和MCM混用,实际上不够严密。MCM与OFDM常用于无线信道,它们的区别在于:OFDM技术特指将信道划分成正交的子信道,频道利用率高;而MCM,可以是更多种信道划分方法。OFDM技术的推出其实是为了提高载波的频谱利用率,或者是为了改进对多载波的调制,它的特点是各子载波相互正交,使扩频调制后的频谱可以相互重叠,从而减小了子载波间的相互干扰。在对每个载波完成调制以后,为了增加数据的吞吐量、提高数据传输的速度,它又采用了一种叫作HomePlug的处理技术,来对所有将要被发送数据信号位的载波进行合并处理,把众多的单个信号合并成一个独立的传输信号进行发送。另外OFDM之所以备受关注,其中一条重要的原因是它可以利用离散傅立叶反变换/离散傅立叶变换(IDFT/DFT)代替多载波调制和解调。OFDM增强了抗频率选择性衰落和抗窄带干扰的能力。在单载波系统中,单个衰落或者干扰可能导致整个链路不可用,但在多载波的OFDM系统中,只会有一小部分载波受影响。此外,纠错码的使用还可以帮助其恢复一些载波上的信息。通过合理地挑选子载波位置,可以使OFDM的频谱波形保持平坦,同时保证了各载波之间的正交。OFDM尽管还是一种频分复用(FDM),但已完全不同于过去的FDM。OFDM的接收机实际上是通过FFT实现的一组解调器。它将不同载波搬移至零频,然后在一个码元周期内积分,其他载波信号由于与所积分的信号正交,因此不会对信息的提取产生影响。OFDM的数据传输速率也与子载波的数量有关。OFDM每个载波所使用的调制方法可以不同。各个载波能够根据信道状况的不同选择不同的调制方式,比如BPSK、QPSK、8PSK、16QAM、64QAM等等,以频谱利用率和误码率之间的最佳平衡为原则。我们通过选择满足一定误码率的最佳调制方式就可以获得最大频谱效率。无线多径信道的频率选择性衰落会使接收信号功率大幅下降,经常会达到30dB之多,信噪比也随之大幅下降。为了提高频谱利用率,应该使用与信噪比相匹配的调制方式。可靠性是通信系统正常运行的基本考核指标,所以很多通信系统都倾向于选择BPSK或QPSK调制,以确保在信道最坏条件下的信噪比要求,但是这两种调制方式的频谱效率很低。OFDM技术使用了自适应调制,根据信道条件的好坏来选择不同的调制方式。比如在终端靠近基站时,信道条件一般会比较好,调制方式就可以由BPSK(频谱效率1bit/s/Hz)转化成16QAM-64QAM(频谱效率4~6bit/s/Hz),整个系统的频谱利用率就会得到大幅度的提高。自适应调制能够扩大系统容量,但它要求信号必须包含一定的开销比特,以告知接收端发射信号所应采用的调制方式。终端还要定期更新调制信息,这也会增加更多的开销比特。OFDM还采用了功率控制和自适应调制相协调工作方式。信道好的时候,发射功率不变,可以增强调制方式(如64QAM),或者在低调制方式(如QPSK)时降低发射功率。功率控制与自适应调制要取得平衡。也就是说对于一个发射台,如果它有良好的信道,在发送功率保持不变的情况下,可使用较高的调制方案如64QAM;如果功率减小,调制方案也就可以相应降低,使用QPSK方式等。自适应调制要求系统必须对信道的性能有及时和精确的了解,如果在差的信道上使用较强的调制方式,那么就会产生很高的误码率,影响系统的可用性。OFDM系统可以用导频信号或参考码字来测试信道的好坏。发送一个已知数据的码字,测出每条信道的信噪比,根据这个信噪比来确定最适合的调制方式。

尽管TD-LTE的关键技术用OFDM技术,但其中也存在不足,归纳为三点:PARP较高、受频率偏差的影响、受时间偏差的影响。下面简单地介绍一下OFDM系统降低PAPR 的技术。 OFDM包络的不稳定性可以用PAPR 来表示。PAPR 越大, 系统包络的不稳定性越大。因此要改善系统的性能, 就要设法减少PAPR, 而PAPR 与传输序列的自相关函数有关。围绕如何降低OFDM系统的PAPR问题, 国内外学者已做了大量的研究工作, 其主要算法可以归纳为以下三类。一、信号预畸变技术 信号预畸变技术的中心思想是在信号送到放大器之前, 首先经过非线性处理对有较大峰值功率的信号进行预畸变, 使其不会超出放大器的动态变化范围, 从而避免较大PAPR 的出现。该技术包括以下7 种方法:1、限幅法 限幅法中矩形窗的引入会对原信号的频谱产生影响,从而引起新的带外噪声, 降低频谱效率。并且由于该法是一种非线性变化, 会产生严重的带内失真, 从而降低误码率性能, 导致系统性能下降。为了克服由于限幅导致的误码性能的恶化, 可以采用有效的信道编解码技术。2、加窗法 这种方法采用了频谱特性好于矩形窗的窗函数, 但需要在上采样后的较高速率下对信号进行处理, 因此实现较难, 且会影响信号频谱特性。3、加校正函数法 加校正函数法指用校正函数来处理OFDM信号, 以消除OFDM的幅度峰值, 而由校正函数引起的频带外干扰为零或忽略不计。其中校正函数又分为乘性校正函数和加性校正函数两种。4、加权多载波调制法 加权多载波调制法是指在FFT前用Gaussian或者Hamming 窗函数加权输入信号来降低PAPR。5、载波抑制峰值法 载波抑制峰值法的主要思想是当OFDM信号的峰值功率出现时, 将OFDM一些子载波不用来传送数据, 而是传送一些能抑制和抵消峰值的、设计好的信号。通常建议使用不同的频段作为这个载波的频率。这个技术的优点是既不会降低系统的SNR( 信噪比) , 也不会引入带外干扰, 缺点是降低了系统的数据速率, 增加了系统的复杂性。6、压缩扩展法 传统扩展法的主要思想是提升信号中的低幅度值而保持其峰值幅度, 以此来提升信号的平均功率, 从而达到降低PAPR 的目的。然而由此增加了系统的平均发射功率, 使符号的功率值更加接近功率放大器的非线性变换区域, 容易造成信号失真。因此提出了一种改进的压缩扩展变换方法, 这种方法中, 对大功率发射信号进行了压缩, 而把小功率信号进行了放大, 从而可以使发射信号的平均功率相对保持不变。这样不但可以减小系统的PAPR, 而且还可以使小功率信号抗干扰的能力有所增强。次方法虽然计算复杂度低, 但是放大器输入信号的平均功率却增加了, 从而对非线性失真更敏感。因此又有人提出了压扩转换法,提出的压缩扩展法均分别借鉴了语音信号信源编码中非均匀量化方法的μ律和A 律的压缩扩展表达式, 这些方法在发送端对信号进行压缩或扩大, 使PAPR 降低, 而在接收端能做到几乎不损伤信号的恢复, 实现的计算复杂度也较低。7、预畸变和畸变补偿法 预畸变是指在发送端对未进入放大器的信号进行与放大器畸变特性相反的预畸变, 以减少信号在通过放大器后的畸变。畸变补偿技术是指在OFDM系统的接收端加一个补偿器用于补偿和修正被畸变的信号。这两种技术在实际应用中都会大大增加系统的复杂性。

OFDM(Orthogonal Frequency Division Multiplexing)即正交频分复用技术,实际上OFDM是MCM Multi-Carrier Modulation,多载波调制的一种。其主要思想是:将信道分成若干正交子信道,将高速数据信号转换成并行的低速子数据流,调制到在每个子信道上进行传输。正交信号可以通过在接收端采用相关技术来分开,这样可以减少子信道之间的相互干扰 ICI 。每个子信道上的信号带宽小于信道的相关带宽,因此每个子信道上的可以看成平坦性衰落,从而可以消除符号间干扰。而且由于每个子信道的带宽仅仅是原信道带宽的一小部分,信道均衡变得相对容易。在向B3G/4G演进的过程中,OFDM是关键的技术之一,可以结合分集,时空编码,干扰和信道间干扰抑制以及智能天线技术,最大限度的提高了系统性能。包括以下类型:V-OFDM,W-OFDM,F-OFDM,MIMO-OFDM。
11发展历史
上个世纪70年代,韦斯坦(Weinstein)和艾伯特(Ebert)等人应用离散傅里叶变换(DFT)和快速傅里叶方法(FFT)研制了一个完整的多载波传输系统,叫做正交频分复用(OFDM)系统。
OFDM是正交频分复用的英文缩写。正交频分复用是一种特殊的多载波传输方案。OFDM应用离散傅里叶变换(DFT)和其逆变换(IDFT)方法解决了产生多个互相正交的子载波和从子载波中恢复原信号的问题。这就解决了多载波传输系统发送和传送的难题。应用快速傅里叶变换更使多载波传输系统的复杂度大大降低。从此OFDM技术开始走向实用。但是应用OFDM系统仍然需要大量繁杂的数字信号处理过程,而当时还缺乏数字处理功能强大的元器件,因此OFDM技术迟迟没有得到迅速发展。
近些年来,集成数字电路和数字信号处理器件的迅猛发展,以及对无线通信高速率要求的日趋迫切,OFDM技术再次受到了重视。在上个世纪60年代已经提出了使用平行数据传输和频分复用(FDM)的概念。1970年,美国申请和发明了一个专利,其思想是采用平行的数据和子信道相互重叠的频分复用来消除对高速均衡的依赖,用于抵制冲激噪声和多径失真,而能充分利用带宽。这项技术最初主要用于军事通信系统。但在以后相当长的一段时间,OFDM理论迈向实践的脚步放缓了。由于OFDM各个子载波之间相互正交,采用FFT实现这种调制,但在实际应用中,实时傅立叶变换设备的复杂度、发射机和接收机振荡器的稳定性以及射频功率放大器的线性要求等因素部成为OFDM技术实现的制约条件。在二十世纪80年代,MCM获得了突破性进展,大规模集成电路让FFT技术的实现不再是难以逾越的障碍,一些其它难以实现的困难也部得到了解决,自此,OFDM走上了通信的舞台,逐步迈向高速数字移动通信的领域。
12应用情况
由于技术的可实现性,在二十世纪90年代,OFDM广泛用干各种数字传输和通信中,如移动无线FM信道,高比特率数字用户线系统(HDSL),不对称数字用户线系统(ADSL),甚高比特率数字用户线系统HDSI,数字音频广播(DAB)系统,数字视频广播(DVB)和HDTV地面传播系统。1999年,IEEE802lla通过了一个无线局域网标准,其中OFDM调制技术被采用为物理层标准,使得传输速率可以达54MbPs。这样,可提供25MbPs的无线ATM接口和10MbPs的以太网无线帧结构接口,并支持语音、数据、图像业务。这样的速率完全能满足室内、室外的各种应用场合。欧洲电信组织(ETSl)的宽带射频接入网的局域网标准也把OFDM定为它的调制标准技术。
2001年,IEEE80216通过了无线城域网标准,该标准根据使用频段的不同,具体可分为视距和非视距两种。其中,使用许可和免许可频段,由于在该频段波长较长,适合非视距传播,此时系统会存在较强的多径效应,而在免许可频段还存在干扰问题,所以系统采用了抵抗多径效应、频率选择性衰落或窄带干扰上有明显优势的OFDM调制,多址方式为OFDMA。而后,IEEE80216的标准每年都在发展,2006年2月,IEEE80216e(移动宽带无线城域网接入空中接口标准)形成了最终的出版物。当然,采用的调制方式仍然是OFDM。
2004年11月,根据众多移动通信运营商、制造商和研究机构的要求,3GPP通过被称为Long Term Evolution(LTE)即“3G长期演进”的立项工作。项目以制定3G演进型系统技术规范作为目标。3GPP经过激烈的讨论和艰苦的融合,终于在2005年12月选定了LTE的基本传输技术,即下行OFDM,上行SC。OFDM由于技术的成熟性,被选用为下行标准很快就达成了共识。而上行技术的选择上,由于OFDM的高峰均比(PAPR)使得一些设备商认为会增加终端的功放成本和功率消耗,限制终端的使用时间,一些则认为可以通过滤波,削峰等方法限制峰均比。B3G/4G的目标是在高速移动环境下支持高达100Mb/S的下行数据传输速率,在室内和静止环境下支持高达1Gb/S的下行数据传输速率。2010年全球首个TD-LTE-A的规模实验网将在上海世博会向媒体开放。4G是基于OFDM加MIMO的技术组合,但整体结构不一样,基于OFDM和MIMO的有两套标准,一个是IEEE802-16M,一个是LTE-Advanced,而OFDM技术是关键核心技术之一。
14优势与不足
优势:OFDM存在很多技术优点见如下,在3G、4G中被运用,作为通信方面其有很多优势:
(1) OFDM技术在窄带带宽下也能够发出大量的数据,能同时分开至少1000个数字信号,而且在干扰的信号周围可以安全运行的能力将直接威胁到目前市场上已经开始流行的CDMA技术的进一步发展壮大的态势,正是由于具有了这种特殊的信号“穿透能力”使得OFDM技术深受欧洲通信营运商以及手机生产商的喜爱和欢迎,例如加利福尼亚Cisco系统公司、纽约工学院以及朗讯工学院等开始使用,在加拿大WiLAN工学院也开始使用这项技术。
(2) OFDM技术能够持续不断地监控传输介质上通信特性的突然变化,由于通信路径传送数据的能力会随时间发生变化,所以OFDM能动态地与之相适应,并且接通和切断相应的载波以保证持续地进行成功的通信该技术可以自动地检测到传输介质下哪一个特定的载波存在高的信号衰减或干扰脉冲,然后采取合适的调制措施来使指定频率下的载波进行成功通信。
(3) OFDM技术特别适合使用在高层建筑物、居民密集和地理上突出的地方以及将信号散播的地区。高速的数据传播及数字语音广播都希望降低多径效应对信号的影响。
(4) OFDM技术的最大优点是对抗频率选择性衰落或窄带干扰。在单载波系统中,单个衰落或干扰能够导致整个通信链路失败,但是在多载波系统中,仅仅有很小一部分载波会受到干扰。对这些子信道还可以采用纠错码来进行纠错。
(5) OFDM技术可以有效地对抗信号波形间的干扰,适用于多径环境和衰落信道中的高速数据传输。当信道中因为多径传输而出现频率选择性衰落时,只有落在频带凹陷处的子载波以及其携带的信息受影响,其他的子载波未受损害,因此系统总的误码率性能要好得多。
(6) OFDM技术通过各个子载波的联合编码,具有很强的抗衰落能力。OFDM技术本身已经利用了信道的频率分集,如果衰落不是特别严重,就没有必要再加时域均衡器。通过将各个信道联合编码,则可以使系统性能得到提高。
(7) OFDM技术可使信道利用率很高,这一点在频谱资源有限的无线环境中尤为重要;当子载波个数很大时,系统的频谱利用率趋于2Baud/Hz。
存在不足:虽然OFDM有上述优点,但是同样其信号调制机制也使得OFDM信号在传输过程中存在着一些劣势:
(1)对相位噪声和载波频偏十分敏感
这是OFDM技术一个非常致命的缺点,整个OFDM系统对各个子载波之间的正交性要求格外严格,任何一点小的载波频偏都会破坏子载波之间的正交性,引起ICI,同样,相位噪声也会导致码元星座点的旋转、扩散,从而形成ICI。而单载波系统就没有这个问题,相位噪声和载波频偏仅仅是降低了接收到的信噪比SNR,而不会引起互相之间的干扰。
(2)峰均比过大
OFDM信号由多个子载波信号组成,这些子载波信号由不同的调制符号独立调制。同传统的恒包络的调制方法相比,OFDM调制存在一个很高的峰值因子。因为OFDM信号是很多个小信号的总和,这些小信号的相位是由要传输的数据序列决定的。对某些数据,这些小信号可能同相,而在幅度上叠加在一起从而产生很大的瞬时峰值幅度。而峰均比过大,将会增加A/D和D/A的复杂性,而且会降低射频功率放大器的效率。同时,在发射端,放大器的最大输出功率就限制了信号的峰值,这会在OFDM频段内和相邻频段之间产生干扰。
(3)所需线性范围宽
由于OFDM系统峰值平均功率比(PAPR)大,对非线性放大更为敏感,故OFDM调制系统比单载波系统对放大器的线性范围要求更高。

11 OFDM

111 OFDM背景

OFDM(正交频分复用)的概念于20世纪50~60年代提出,1970年OFDM的专利被发表,其基本思想通过采用允许子信道频谱重叠,但相互间又不影响的频分复用(FDM)方法来并行传送数据。该技术由于其频谱利用率高、抗多径干扰等特点,在国际上受到了广泛的关注。1971年Weinstein和Ebert提出了使用离散傅立叶变换实现OFDM系统中的全部调制和解调功能的建议,简化了系统的调制解调,为实现OFDM的全数字化方案作了理论上的准备。80年代以后,OFDM的调制技术再一次成为研究热点。如在有线信道的研究中,Hirosaki于1981年用离散傅里叶变换(DFT)完成的OFDM调制技术,试验成功了16QAM多路并行传送192kbit/s的电话线MODEM。

随着技术的成熟和成本的下降,OFDM已被广泛的应于地面数字音视频广播(DAB、DVB-T)、非对称的数据用户环路(asymmetric DSL)、而且已经成为无线局域网标准(如IEEE80211a/g /n,WiFi)和3G标准(WiMAX)的一部分并且很多专家都预计在4G标准中OFDM将是核心技术。

近年来,随着光通信系统向长距离大容量方向发展,很多科研机构和大学开始把目光转向相干光通信系统。由于相干光探测技术有着很高的探测灵敏度,系统有很长的传输距离。而且相干光通信系统在理论上可以对很多线性失真都可以完全补偿。加上OFDM技术自有的高频谱效率和抗色散特性,于是有人提出了把正交频分复用技术应用于相干探测的光通信系统。国际上有许多研究机构和大学纷纷展开了对光OFDM技术的研究。光正交频分复用在国际上已成为光通信的研究热点。国外的主要研究小组有美国的University of Arizona、英国的Bangor University、朗讯-贝尔实验室、日本的KDDI实验室、澳大利亚的University of Monas等,这些研究组对OOFDM系统进行了探索研究,包括OOFDM中的非线性问题、性能评价、频谱效率等方面。国内有电子科技大学、吉林大学等单位对多模光纤下OOFDM的实现进行了仿真研究。

112 OFDM的基本思想

正交频分复用(OFDM)技术实际上是一种特殊的多载波传输技术,它既可以看作一种调制技术,也可以看作一种复用技术。OFDM与传统的频分复用(FDM)基本原理类似,即把高速的数据流通过串并变换分配到速率相对较低的若干个频率子信道中进行传输。不同的是,OFDM技术更好地利用了控制方法,使得频谱利用率有所提高。OFDM技术的最大特点是各副载波相互正交。

OFDM载波的正交性

OFDM的这种结构并不完全同于以前说的频分复用,频分复用是用不同频率来传输信号,各个被调制的子载波的频谱不能重合,各个子载波间要加入保护间隔,这样在接收端才能正确解调。

而OFDM技术中,利用了各个子载波间的正交性,各个已调制的子载波的频谱重叠在一起,当然中间没有加入保护频带。利用这种正交性,尽管频谱重叠,但仍能在接收端解调出原信号。子载波间的正交性可以通过时域和频域两方面进行讨论。从时域来看,每个子载波在一个OFDM符号周期内都包含整数倍个周期,而且各个相邻的子载波之间相差一个周期。从频域来看,就是在OFDM信号中各子载波的频谱图中,在每个子载波频率的最大值处,所有其他子信道的频谱值恰好为0。因为在对OFDM符号进行解调的过程中,需要计算这些点上所对应的每个子载波频率的最大值,所以可以从多个相互重叠的子信道符号中提取每个子信道的符号,而不会受到其他子信道的干扰。

113 OFDM系统的优缺点分析

OFDM的优点

(1) 将高速数据流串并转换使子载波的数据符号持续长度相对增加,从而有效的减小符号间干扰,进而减小均衡的复杂度;

(2) 由于各子载波之间相互正交,允许子信道的频谱相互重叠,因而相对常规的频分复用系统有非常高的频谱利用率;

(3) 各子信道的正交调制和解调可以分别用IDFT和DFT来实现,在子载波数很多的系统中,可以用IFFT和FFT来实现;

(4) 通过使用不同数量的子信道来实现上行和下行链路中不同的传输速率,从而实现业务的非对称性传输;

(5) 易于和其他多种接入方法结合使用。

OFDM的缺点

(1) 易受频率偏差的影响;

(2) 较高的峰值平均功率比。

114 OFDM系统的关键技术

(1) 时域同步和频域同步

OFDM系统对定时和频率偏移敏感,特别是在实际应用中与FDMA、TDMA和CDMA等多址方式结合使用时,时域和频率同步显得尤为重要。

(2) 信道估计

在OFDM系统中,信道估计器的设计主要有两个问题:一是导频信息的选择,二是复杂度较低的和导频跟踪能力较好的信道估计器的设计。在实际设计中,导频信息的选择和最佳估计器的设计通常又是相互关联的,因为估计器的性能与导频信息的传输方式有关。

(3) 信道编码与交织

为了提高数字通信系统的性能,信道编码和交织是普遍采用的方法。对于衰落信道中的随机错误,可以采用信道编码;对于衰落信道中的突发错误,可以采用交织技术。实际应用中,通常同时采用信道编码和交织,进一步改善整个系统的性能。

(4) 降低峰值平均功率比

由于OFDM信号在时域上表现为N个正交子载波信号的叠加,当这N个信号恰好均以峰值出现时,OFDM信号也将产生最大峰值,该峰值功率是平均功率的N倍。尽管峰值功率出现的概率较低,但是为了不失真的传输这些高PAPR的OFDM信号,发送端对高功率放大器的线性要求也很高,从而导致了发送效率极低,接收端对前端放大器以及A/D变换器的线性度要求也很高。因此,高的PAPR使得OFDM系统的性能大大下降甚至直接影响实际应用。为了解决这一问题,人们提出了基于信号畸变技术、信号扰码技术和基于信号空间扩展等降低OFDM系统的PAPR的方法。

(5) 均衡

在一般的衰落环境下,OFDM系统中均衡不是有效改善系统性能的方法,因为均衡的实质是补偿多径信道引起的码间干扰,而OFDM技术本身已经利用了多径信道的分集特性,所以就没有必要再做均衡了。在高度散射的信道中,信道记忆长度很长,循环前缀CP的长度必须很长,才能使ISI尽量不出现。但是,CP长度过长必然导致能量的大量损失,尤其对子载波个数不是很大的系统。这时,可以考虑加均衡器以使CP的长度适当减小,即通过增加系统的复杂性来换取系统频带利用率的提高。

12.OOFDM

121 OOFDM的基本思想

光正交频分复用(Optical Orthogonal Frequency Division Multiplexing,OOFDM)技术的主要思想就是在频域内将给定信道分成许多正交子信道,在每个子信道上使用一个子载波进行调制,各子载波并行传输。由于色散容限的平方与光纤带宽成反比,信道带宽越小,色散容限就越大,能够容忍色散的能力就强,OOFDM技术将光纤频带分成许多相互正交的子频带,这些子频带作为传输信息的子信道,从而使色散容限变高。应用OOFDM技术可以做到无色散补偿的高速光纤传输,同时对光放大器的要求又有所降低,既可以大量节省器件费用又能保证传输品质。

在OOFDM系统中,接收侧可以采用相干检测或直接检测,直接检测相对相干检测,实现简单,较容易实现色散补偿,其简单的结构更易使得OOFDM系统升级到100Gb/s。所以基于直接检测的OOFDM系统(DD-OOFDM(Direct-Detection OOFDM))具有一定的发展潜力。

122 OOFDM的基本原理

OOFDM的基本原理和OFDM相似,唯一的区别就是将信号由电域的无线信道传输变为光域上的光纤信道传输,原理图如下:

用户数据首先通过串并转换变成N路,N为OFDM系统中子载波的个数。这些数据对各自的子载波进行调制,调制方式可以相同或不同。然后,多路信号通过IFFT实现OFDM调制,OFDM调制后的多路信号再通过一个并串转换和一个数字模拟转换,变成直接调制(内调制)激光器的调制电流信号。在接收端,经过光纤信道传输的光OFDM信号,首先经过光电转换成电信号,模拟数字转换以后经串并转换进入FFT完成OFDM解调,恢复出每个子载波的调制信号,之后再经过相应的解调恢复出发送的数据。最后通过一个并串转换后恢复发端传来的数据流。

二PON

21 PON简介

根据OLT(光线路终端)到各ONU(光网络单元)之间是否存在有源设备可以将光接入网分为PON(无源光网络)和AON(有源光网络)。PON(无源光网络)是指ODN(光配线网)中不含有任何电子器件,ODN全部由光分路器(Splitter)等无源器件组成,不需要贵重的有源电子设备。

PON网络的突出优点是消除了户外的有源设备,所有的信号处理功能均在交换机和用户宅内设备完成。而且这种接入方式的前期投资小,大部分资金可以等到用户真正接入时才投入。它的传输距离比有源光纤接入系统的短,覆盖的范围较小,但它造价低,无需另设机房,维护容易。因此这种结构可以经济地为居家用户服务。

PON的复杂性在于信号处理技术。在下行方向上,交换机发出的信号是按广播式发给所有的用户。在上行方向上,各ONU必须采用某种多址接入协议,如TDMA(Time Division Multiple Access)协议,才能完成共享传输通道信息访问

PON的基本组成包括OLT(光线路终端)、ODN(光分配网络)、ONU(光网络单元),其中OLT具有与交换机接口的功能,完成下行电到光、上行光到电的转换,以及分配和控制各信道的连接,对各个光电接口实施监控、提供 *** 作、维护及管理功能;ODN的功能是在OLT和ONU之间建立光传输通道,完成光信号功率分配、波长复用等,完全由光纤无源器件组成;ONU提供与ODN之间的光接口,实现用户侧的接口功能。PON的基本结构图如下:

PON的网络结构示意图


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/10346695.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-07
下一篇 2023-05-07

发表评论

登录后才能评论

评论列表(0条)

保存