在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。
矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考《矩阵理论》。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。
数值分析的主要分支致力于开发矩阵计算的有效算法,这是一个已持续几个世纪以来的课题,是一个不断扩大的研究领域。 矩阵分解方法简化了理论和实际的'计算。 针对特定矩阵结构(如稀疏矩阵和近角矩阵)定制的算法在有限元方法和其他计算中加快了计算。 无限矩阵发生在行星理论和原子理论中。 无限矩阵的一个简单例子是代表一个函数的泰勒级数的导数算子的矩阵。
使用初等行变换求逆矩阵即用行变换把矩阵(A,E)化成(E,B)的形式,那么B就等于A的逆
在这里(A,E)=
1 1 -1 1 0 0
2 1 0 0 1 0
1 -1 0 0 0 1 r2-2r1,r3-r1
~
1 1 -1 1 0 0
0 -1 2 -2 1 0
0 -2 1 -1 0 1 r1+r2,r3-2r2,r2(-1)
~
1 0 1 -1 1 0
0 1 -2 2 -1 0
0 0 -3 -5 2 1 r1-r3,r3/(-3),r2+2r3
~
1 0 0 -8/3 5/3 1/3
0 1 0 16/3 -7/3 -2/3
0 0 1 5/3 -2/3 -1/3
这样就得到了(E,B),所以其逆矩阵为
-8/3 5/3 1/3
16/3 -7/3 -2/3
5/3 -2/3 -1/3
设A是一个n阶矩阵,若存在另一个n阶矩阵B,使得: AB=BA=E ,则称方阵A可逆,并称方阵B是A的逆矩阵。
若矩阵A是可逆的,则A的逆矩阵是唯一的,并记作A的逆矩阵为A-1;对n阶方阵A,若r(A)=n,则称A为满秩矩阵或非奇异矩阵。
相关性质:
(1)A与B的地位是平等的,故A、B两矩阵互为逆矩阵,也称A是B的逆矩阵。
(2)任何一个满秩矩阵都能通过有限次初等行变换化为单位矩阵。
(3)零矩阵是不可逆的,即取不到B,使OB=BO=E。
(4)如果A可逆,那么A的逆矩阵是唯一的。
事实上,设B、C都是A的逆矩阵,则有B=BE =B(AC)=(BA)C=EC=C。。
如下参考:
1启动复杂的MATLAB,如下图所示。
2输入“clear”和“CLC”代码(清除屏幕)如下图所示。
3根据你的要求建立矩阵系统(图中例子设矩阵A=[1,2,3,4],‘A’可以定义为你需要的任何字母)如下图所示。
4使用代码B=inv(A),“B”可以定义为您需要的其他字母,inv()中的字母是您需要反转的矩阵,如下图所示。
5验证解的逆,如果两个矩阵的乘积是单位矩阵,则其逆是正确的,如下图所示。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)