解一元二次
方程的基本思想方法是通过“降次”将它化为两个一元一次方程。一元二次方程有四种解法: 1、直接
开平方法;2、配方法;3、公式法;4、
因式分解法。 1、直接开平方法: 直接开平方法就是用直接开平方求解一元二次方程的方法。用直接开平方法解形如(x-m)^2;=n (n≥0)的 方程,其解为x=±√n+m 例1.解方程(1)(3x+1)^2;=7 (2)9x^2;-24x+16=11 分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)^2;,右边=11>0,所以此方程也可用直接开平方法解。 (1)解:(3x+1)^2=7 ∴(3x+1)^2=7 ∴3x+1=±√7(注意不要丢解符号) ∴x= ﹙﹣1±√7﹚/3 ∴原方程的解为x=﹙√7﹣1﹚/3,x=﹙﹣√7-1﹚/3 (2)解: 9x^2-24x+16=11 ∴(3x-4)^2=11 ∴3x-4=±√11 ∴x=﹙ 4±√11﹚/3 ∴原方程的解为x=﹙4﹢√11﹚/3,x= ﹙4﹣√11﹚/3 2.配方法:用配方法解方程ax^2+bx+c=0 (a≠0) 先将常数c移到方程右边:ax^2+bx=-c 将二次项系数化为1:x^2+b/ax=- c/a 方程两边分别加上一次项系数的一半的平方:x^2+b/ax+( b/2a)^2=- c/a+( b/2a)^2; 方程左边成为一个完全平方式:(x+b/2a )2= -c/a﹢﹙b/2a﹚² 当b²-4ac≥0时,x+b/2a =±√﹙﹣c/a﹚﹢﹙b/2a﹚² ∴x=﹛﹣b±[√﹙b²﹣4ac﹚]﹜/2a(这就是求根公式) 例2.用配方法解方程 3x²-4x-2=0 解:将常数项移到方程右边 3x²-4x=2 将二次项系数化为1:x²-﹙4/3﹚x= 方程两边都加上一次项系数一半的平方:x²-﹙4/3﹚x+( 4/6)²= +(4/6 )² 配方:(x-4/6)²= +(4/6 )² 直接开平方得:x-4/6=± √[ +(4/6 )² ] ∴x= 4/6± √[ +(4/6 )² ] ∴原方程的解为x=4/6﹢√﹙10/6﹚,x=4/6﹣√﹙10/6﹚ 3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b²-4ac的值,当b²-4ac≥0时,把各项系数a, b, c的值代入求根公式x=[-b±√(b²-4ac)]/(2a) , (b²-4ac≥0)就可得到方程的根。 例3.用公式法解方程 2x²-8x=-5 解:将方程化为一般形式:2x²-8x+5=0 ∴a=2, b=-8, c=5 b²-4ac=(-8)²-4×2×5=64-40=24>0 ∴x=[(-b±√(b²-4ac)]/(2a) ∴原方程的解为x=,x= 4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。这种解一元二次方程的方法叫做因式分解法。 例4.用因式分解法解下列方程: (1) (x+3)(x-6)=-8 (2) 2x²+3x=0 (3) 6x²+5x-50=0 (选学) (4)x2-2( + )x+4=0 (选学) (1)解:(x+3)(x-6)=-8 化简整理得 x2-3x-10=0 (方程左边为二次三项式,右边为零) (x-5)(x+2)=0 (方程左边分解因式) ∴x-5=0或x+2=0 (转化成两个一元一次方程) ∴x1=5,x2=-2是原方程的解。 (2)解:2x2+3x=0 x(2x+3)=0 (用提公因式法将方程左边分解因式) ∴x=0或2x+3=0 (转化成两个一元一次方程) ∴x1=0,x2=-是原方程的解。 注意:有些同学做这种题目时容易丢掉x=0这个解,应记住一元二次方程有两个解。 (3)解:6x2+5x-50=0 (2x-5)(3x+10)=0 (十字相乘分解因式时要特别注意符号不要出错) ∴2x-5=0或3x+10=0 ∴x1=, x2=- 是原方程的解。 (4)解:x2-2(+ )x+4 =0 (∵4 可分解为2 ·2 ,∴此题可用因式分解法) (x-2)(x-2 )=0 ∴x1=2 ,x2=2是原方程的解。 小结: 一般解一元二次方程,最常用的方法还是因式分解法,在应用因式分解法时,一般要先将方程写成一般形式,同时应使二次项系数化为正数。 直接开平方法是最基本的方法。 公式法和配方法是最重要的方法。公式法适用于任何一元二次方程(有人称之为万能法),在使用公式法时,一定要把原方程化成一般形式,以便确定系数,而且在用公式前应先计算判别式的值,以便判断方程是否有解。 配方法是推导公式的工具,掌握公式法后就可以直接用公式法解一元二次方程了,所以一般不用配方法 解一元二次方程。但是,配方法在学习其他数学知识时有广泛的应用,是初中要求掌握的三种重要的数学方法之一,一定要掌握好。(三种重要的数学方法:换元法,配方法,待定系数法)给你点一下思路吧
如果求f(x)=g(x)的思路
首先构造函数h(x)=f(x)-g(x)
a<x<b
求导令h'(x)=0
当有且只有唯一解的时候h'(x0)=0
如果是极小值(x0必然属于[a,b])
并且计算极小值h(x0)=c
那么就看lim(x趋向于a)h(x)=a和h(x趋向于b)h(x)=b
观察a,b,c的符号结合零点定理可以了
因为函数在[a,x0]单调减必然,在(x0,b]上单调增必然
都是单调那么如果定理成立,那么在讨论区间上有且只有一个解
其他情况都是类似的1转化: 将此一元二次方程化为ax^2+bx+c=0的形式(即一元二次方程的一般形式)化为一般形式 2移项: 常数项移到等式右边 3系数化1: 二次项系数化为1 4配方: 等号左右两边同时加上一次项系数一半的平方 5求解: 用直接开平方法求解 整理 (即可得到原方程的根) 代数式表示方法:注(^2是平方的意思) ax^2+bx+c=a(x+b/2a)^2+(4ac-b^2)/4a=a[(x+m)^2-n^2]=a(x+m+n)(x+m-n) 例:解方程2x^2+4=6x 1 2x^2-6x+4=0 2 x^2-3x+2=0 3 x^2-3x=-2 4 x^2-3x+225=025 (+225:加上3一半的平方,同时-2也要加上3一半的平方让等式两边相等) 5 (x-15)^2=025 (a^2+2b+1=0 即 (a+1)^2=0) 6 x-15=±05 7 x1=2 x2=1 (一元二次方程通常有两个解,X1 X2)
编辑本段二次函数配方法技巧
y=ax&sup要的一项,往往在解决方程,不等式,函数中需用,下面详细说明: 首先,明确的是配方法就是将关于两个数(或代数式,但这两一定是平方式),写成(a+b)平方的形式或(a-b)平方的形式: 将(a+b)平方的展开得 (a+b)^2=a^2+2ab+b^2 所以要配成(a+b)平方的形式就必须要有a^2,2ab,b^2 则选定你要配的对象后(就是a^2和b^2,这就是核心,一定要有这两个对象,否则无法使用配方公式),就进行添加和去增,例如: 原式为a^2+ b^2 解: a^2+ b^2 = a^2+ b^2 +2ab-2ab = ( a^2+ b^2 +2ab)-2ab = (a+b)^2-2ab 再例: 原式为a^2+ 2b^2 解: a^2+2b^2 = a^2+ b^2 + b^2 +2ab-2ab = ( a^2+ b^2 +2ab)-2ab+ b^2 = (a+b)^2-2ab+ b^2 这就是配方法了, 附注:a或b前若有系数,则看成a或b的一部分, 例如:4a^2看成(2a)^2 9b^2看成(a^29b^2)
一元多次方程整数解的个数用求根公式进行解决。
一元一次方程、一元二次方程、一元三次方程分别有一个根、二个根、三个根,它们都可以用代数解法来解,并且有求根公式。
可以证明一元四次方程有四个根,并且可以用代数解法求解。 当n > 4时,根据伽罗华理论, 一般形式的n次方程不能用代数解法来解。
一元n次方程的根的个数定理和推论:
一元n次方程至少有一个根,如果f (x )的次数大于1, 那么根据定理1可以知道,方程f (x) =0至少有一个根。
设这个根是α,那么由于f(α) =0,根据因式定理可以知道, f(x)=(x-α)q(x),因为x-α和q (x)的次数都低于f(x)的次数,所以f(x)可约。
例如,方程(x-2)3(x+1)2(x-1)=0有三重根2,二重根-1,単根1,因此,这个方程一共有6个根。
评论列表(0条)