1、利用行列式定义直接计算。
2、利用行列式的七大du性质计算。
3、化为三角形zhi行列式:若能把一个行列式经过适当变dao换化为三角形,其结果为行列式主对角线上元素的乘积。因此化三角形是行列式计算中的一个重要方法。
4、降阶法:按某一行(或一列)展开行列式,这样可以降低一阶,更一般地是用拉普拉斯定理,这样可以降低多阶,为了使运算更加简便,往往是先利用列式的性质化简,使行列式中有较多的零出现,然后再展开。
扩展资料:
矩阵行列式的相关性质:
1、行列式A中某行(或列)用同一数k乘,其结果等于kA。
2、行列式A等于其转置行列式AT(AT的第i行为A的第i列)。
3、若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。
4、行列式A中两行(或列)互换,其结果等于-A。 ⑤把行列式A的某行(或列)中各元同乘一数后加到另一行(或列)中各对应元上,结果仍然是A。
实线上3个数乘积取正号, 有3项虚线上3个数乘积取负号, 有3项
问题二:矩阵行列式怎么算? 你好!用行列式的性质如下图计算,把b换成x。经济数学团队帮你解答,请及时采纳。谢谢!
问题三:矩阵的行列式怎么求 用对角线法则:
实线上3个数乘积取正号, 有3项虚线上3个数乘积取负号, 有3项
问题四:四阶行列式怎么计算 高阶行列式的计算首先是要降低阶数。
对于n阶行列式A,可以采用按照某一行或者某一列展开的办法降阶,一般都是第一行或者第一列。因为这样符号好确定。这是总体思路。
当然还有许多技巧,就是比如,把行列式中尽量多出现0,比如:
2 -3 0 2
1 5 2 1
3 -1 1 -1
4 1 2 2
=#把第二行分别乘以-2,-3,-4加到第1、3、4行
0 -13 -4 0
1 5 2 1
0 -16 -5 -4
0 -19 -6 -2
=整理一下
1 5 2 1
0 13 4 0
0 16 5 4
0 19 6 2
=把第四行乘以-2加到第三行
1 5 2 1
0 13 4 0
0 -22 -7 0
0 19 6 2
=按照第一列展开
13 4 0
-22 -7 0
19 6 2
=按照最后一列展开
13 4
22 7 (-2)
=137-224(-2)
=-6
不知道算得对不对
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)