有一个巧妙的解法
for i in zip(grid):print ''join(i)
zip(grid) 将每一列并在一起,
print ''join(i) 列表中的元素合并,然后输出,如果是Python3 这句改成print(''join(i))
比较笨的方法可以写两重循环,组个字符输出。
if source is None: if target is None: ## Find paths between all pairs if weight is None: paths=nxall_pairs_shortest_path(G) else: paths=nxall_pairs_dijkstra_path(G,weight=weight) else: ## Find paths from all nodes co-accessible to the target directed = Gis_directed() if directed: Greverse(copy=False) if weight is None: paths=nxsingle_source_shortest_path(G,target) else: paths=nxsingle_source_dijkstra_path(G,target,weight=weight) # Now flip the paths so they go from a source to the target for target in paths: paths[target] = list(reversed(paths[target])) if directed: Greverse(copy=False) else: if target is None: ## Find paths to all nodes accessible from the source if weight is None: paths=nxsingle_source_shortest_path(G,source) else: paths=nxsingle_source_dijkstra_path(G,source,weight=weight) else: ## Find shortest source-target path if weight is None: paths=nxbidirectional_shortest_path(G,source,target) else: paths=nxdijkstra_path(G,source,target,weight)直接用勾股定理。
x1,y1=map(int,input()split(','))
x2,y2=map(int,input()split(','))
print('{:2f}'format((x1-x2)2+(y1-y2)2)05))
欧式距离python实现代码:
import numpy as np
x=nprandomrandom(10)
y=nprandomrandom(10)
#方法一:根据公式求解
d1=npsqrt(npsum(npsquare(x-y)))
#方法二:根据scipy库求解
from scipyspatialdistance import pdist
X=npvstack([x,y])
d2=pdist(X)
曼哈顿距离python实现:
import numpy as np
x=nprandomrandom(10)
y=nprandomrandom(10)
#方法一:根据公式求解
d1=npsum(npabs(x-y))
#方法二:根据scipy库求解
from scipyspatialdistance import pdist
X=npvstack([x,y])
d2=pdist(X,'cityblock')
程序运行结果:
扩展资料:
C语言实现:
#include "pchh"
#define _CRT_SECURE_NO_WARNINGS
#include<stdioh>
#include<mathh>
void main()
{
float x1, x2, y1, y2;
printf("请输入一组数据:");
while (~scanf("%f%f%f%f", &x1, &y1, &x2, &y2))//开始读取输入的数,知道文件结束。
{
printf("两点间的距离为:%2f\n", sqrt((x1 - x2)(x1 - x2) + (y1 - y2)(y1 - y2)));
printf("请输入一组数据:");
}
}
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)