#taskset
-p,设定一个已存在的pid,而不是重新开启一个新任务
-c,指定一个处理,可以指定多个,以逗号分隔,也可指定范围,如:2,4,5,6-8。
1,切换某个进程到指定的cpu上
taskset -cp 3 13290
2,让某程序运行在指定的cpu上
taskset -c 1,2,4-7 tar jcf test.tar.gz test
需要注意的是,taskset -cp 3 13290在设定一个已经存在的pid时,子进程并不会继承父进程的,
因此像tar zcf xxx.tar.gz xxx这样的命令,最好在启动时指定cpu,如果在已经启动的情况下,则需要指定tar调用的gzip进程。
二,使用nice和renice设置程序执行的优先级
格式:nice [-n 数值] 命令
nice 指令可以改变程序执行的优先权等级。指令让使用者在执行程序时,指定一个优先等级,称之为 nice 值。
这个数值从最高优先级的-20到最低优先级的19。负数值只有 root 才有权力使。
一般使用者,也可使用 nice 指令来做执行程序的优先级管理,但只能将nice值越调越高。
可以通过二种方式来给某个程序设定nice值:
1,开始执行程序时给定一个nice值,用nice命令
2,调整某个运行中程序的PID的nice值,用renice命令
通常通过调高nice值来备份,为的是不占用非常多的系统资源。
例:
nice -n 10 tar zcf test.tar.gz test
由nice启动的程序,其子进程会继承父进程的nice值。
查看nice值
# nice -n -6 vim test.txt &
# ps -l
F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD
4 S 0 19427 2637 0 75 0 – 16551 wait pts/600:00:00 bash
4 T 0 21654 19427 0 71 -6 – 23464 finish pts/600:00:00 vim
renice调整运行中程序的nice值
格式:renice [nice值] PID
三,使用ulimit限制cpu占用时间
注意,ulimit 限制的是当前shell进程以及其派生的子进程。因此可以在脚本中调用ulimit来限制cpu使用时间。
例如,限制tar的cpu占用时间,单位秒。
# cat limit_cpu.sh
ulimit -SHt 100
tar test.tar.gz test
如果tar占用时间超过了100秒,tar将会退出,这可能会导致打包不完全,因此不推荐使用ulimit对cpu占用时间进行限制。
另外,通过修改系统的/etc/security/limits配置文件,可以针对用户进行限制。
四,使用程序自带的对cpu使用调整的功能
某些程序自带了对cpu使用调整的功能,比如nginx服务器,通过其配置文件,可以为工作进程指定cpu,如下:
worker_processes 3
worker_cpu_affinity 0001 0010 0100 1000
这里0001 0010 0100 1000是掩码,分别代表第1、2、3、4颗cpu核心,这就使得cpu的使用比较平均到每个核心上。
首先硬件机制上如何保证 *** 作系统的内核调度进程可以一定的时机可以获得CPU,来进行进程调度.?通常我们会在软件层次上找答案.其实,是通过在CPU的硬件处理机制上实现的.CPU在执行完每个指令的周期后回扫描CPU的内部的一个中断寄存器,查询是否存在中断发生,若没有,则继续执行指令若有,则保存当前的CPU工作环境,跳转到中断服务列程,CPU执行中断服务程序,在推出中断后,跳转到内核调度程序(这是个内核程序,但是是对所有的进程共享的,包括用户进程)此时,内核调度程序占据CPU,进行进程的调度,以决定下个将占用CPU的进程.
接下来就要谈谈什么时候会需要进行进程调度?
在教科书书说到的有几种情况:1时间片到,即每个进程所分配的时间片用完后,要跳转到调度程序2 占用CPU的当前运行进程提出I/O *** 作,发起对内核的系统调用时,在系统调用结束后,跳转到调度程序3 我自己的想法: 当前运行进程对所有内核系统调用的结束时都要跳转到调度程序,根据当前的调度信息来决定下一个可以占用CPU的进程. 我所指的系统调用也包括中断列程.不过对与具体的调度时机,很多书上都写的不清不楚,真不知道他们不懂,还是不屑于写出来告诉我们. 其实除了在大多数硬件中断的触发后跳转到调度程序, 每个时钟中断发生的时候,我觉得都需要跳转到调度程序.(在进入时钟中断列程中,要对进程表中的所有的进程的调度信息进行更新和对各个进程队列的处理),对更新后的进程信息进行处理以决定调度哪个进程. 通常的教科书中都将硬件物理的处理机制和软件的调度处理机制分开,在物理和逻辑两个层次上分开谈,不利于我们理解.最好是把这两个结合起来理解进程调度的工作机制.目前需要解决的是:在什么时候需要内核调度程序占据CPU来调度? 至于调度的算法那就是逻辑层次上要考虑的东西.
其实看了这么多,我也有了些小论文的想法, 因为做的方向是应用在电子电力电路上的嵌入系统控制.该应用对嵌入 *** 作系统的性能就有些特殊的需求:首先体积要小,速度快内核就要小,进程调度要实现抢占式任务调度,且调度切换要快.它的进程调度与通用 *** 作系统的进程调度不同,这是因为它们的要求不一样,嵌入式通常是要求是实时,且严格的讲在电路上的控制系统应该是硬实时,而不象通用系统是非实时,或者是软实时.这跟它们对实时性的要求不同.所以我初步定个题目 "嵌入式系统和通用系统在进程调度上比较和分析,并针对特定的电路控制嵌入实时系统提出一个调度策略". 我想我从明天开始就要准备这方面的资料,分析分析,比较比较,弄篇小论文出来,,不然我都快给它凡死了.
*** 作系统-----进程调度
[color=Silver][/color][color=Gray][/color][color=Fuchsia][/color][color=Blue][/color][color=Aqua][/color][color=Lime][/color][size=4][font=楷体_GB2312][b]要求:实现按优先级与时间片相结合的进程调度算法
内容:
1:设计进程控制快,进程队列结构(包括:就绪队列,等待队列,运行队列)等必要的数据结构。
2:模拟 *** 作系统进程调度的功能,编写进程调度程序,模拟的处理机分派程序,进程等待函数和进程唤醒函数。
3:编写用户程序,创建6个用户进程。
进程调度的设计方法
1。数据结构
(1)优先级与时间片的设计
◆进程因等待放弃CPU时,优先级置为1(高优先级)
◆进程因时间片到放弃CPU时,优先级置为0(低优先级)
◆优先1对应时间片4;优先级0对应时间片10。
(2)进程控制块(PCB)的内容
进程标识3---9
进程优先级 0,1
进程优先级 0,1
进程等待时间 20
链接指针
2:程序算法
(1)PCB结构,变量与主程序
struct PCB
{
int pname
int pri
int runtime
int waitting
struct PCB*next
}
pcb[7]
struct PCB*running,ready,wait
int sin=0
main()
{ 创建PCB[3]--PCB[9]并插入ready队列;/*pname分别为3--9,
pri=0,runtime=10,waittime=0 */
for()/*系统程序,完成初始化和处理机分派功能 */
{cast{sig=0:swtch
sig=1:waiter
sig=3:proc3
sig=4:proc4
sig=5:proc5
sig=6:proc6
sig=7:proc7
sig=8:proc8
sig=9:proc9}
}
}
(2) 进程调度程序
swtch()
{
while(ready==NULL)wakeup()
移出就绪队列第一个PCB
送running指针;
若pri=1,则runntime=4,否则runtime=10
将running→pname 送sig
}
(3) 将进程等待函数
wait()
{将运行进程插入wait队列,优先数置1;
sig=0
}
(4) 进程唤醒函数
wakeup()
{
将wait队列中所有的PCB中waittime减1;
将wait队列中的所有的waittime=0的PCB揭除;
插入到ready队列中第一个优先级为0的PCB前面
}[/b][/font][/size]
进程调度概念: *** 作系统必须为多个,吗进程可能有竞争的请求分配计算机资源。对处理器而言,可分配的资源是在处理器上的执行时间,分配途径是调度。调度功能必须设计成可以满足多个目标,包括公平、任何进程都不会饿死、有效地使用处理器时间和低开销。此外,调度功能可能需要为某些进程的启动或结束考虑不同的优先级和实时最后期限。
这些年以来,调度已经成为深入研究的焦点,并且已经实现了许多不同的算法。如今,调度研究的重点是开发多处理系统,特别是用于多线程的。
下面简介几种调度算法。
一、先来先服务和短作业(进程)优先调度算法
1.先来先服务调度算法
先来先服务(FCFS)调度算法是一种最简单的调度算法,该算法既可用于作业调度,也可用于进程调度。当在作业调度中采用该算法时,每次调度都是从后备作业队列中选择一个或多个最先进入该队列的作业,将它们调入内存,为它们分配资源、创建进程,然后放入就绪队列。在进程调度中采用FCFS算法时,则每次调度是从就绪队列中选择一个最先进入该队列的进程,为之分配处理机,使之投入运行。该进程一直运行到完成或发生某事件而阻塞后才放弃处理机。
2.短作业(进程)优先调度算法
短作业(进程)优先调度算法SJ(P)F,是指对短作业或短进程优先调度的算法。它们可以分别用于作业调度和进程调度。短作业优先(SJF)的调度算法是从后备队列中选择一个或若干个估计运行时间最短的作业,将它们调入内存运行。而短进程优先(SPF)调度算法则是从就绪队列中选出一个估计运行时间最短的进程,将处理机分配给它,使它立即执行并一直执行到完成,或发生某事件而被阻塞放弃处理机时再重新调度。
二、高优先权优先调度算法
1.优先权调度算法的类型
为了照顾紧迫型作业,使之在进入系统后便获得优先处理,引入了最高优先权优先(FPF)调度算法。此算法常被用于批处理系统中,作为作业调度算法,也作为多种 *** 作系统中的进程调度算法,还可用于实时系统中。当把该算法用于作业调度时,系统将从后备队列中选择若干个优先权最高的作业装入内存。当用于进程调度时,该算法是把处理机分配给就绪队列中优先权最高的进程,这时,又可进一步把该算法分成如下两种。
1) 非抢占式优先权算法
在这种方式下,系统一旦把处理机分配给就绪队列中优先权最高的进程后,该进程便一直执行下去,直至完成;或因发生某事件使该进程放弃处理机时,系统方可再将处理机重新分配给另一优先权最高的进程。这种调度算法主要用于批处理系统中;也可用于某些对实时性要求不严的实时系统中。
2) 抢占式优先权调度算法
在这种方式下,系统同样是把处理机分配给优先权最高的进程,使之执行。但在其执行期间,只要又出现了另一个其优先权更高的进程,进程调度程序就立即停止当前进程(原优先权最高的进程)的执行,重新将处理机分配给新到的优先权最高的进程。因此,在采用这种调度算法时,是每当系统中出现一个新的就绪进程i 时,就将其优先权Pi与正在执行的进程j 的优先权Pj进行比较。如果Pi≤Pj,原进程Pj便继续执行;但如果是Pi>Pj,则立即停止Pj的执行,做进程切换,使i 进程投入执行。显然,这种抢占式的优先权调度算法能更好地满足紧迫作业的要求,故而常用于要求比较严格的实时系统中,以及对性能要求较高的批处理和分时系统中。
2.高响应比优先调度算法
在批处理系统中,短作业优先算法是一种比较好的算法,其主要的不足之处是长作业的运行得不到保证。如果我们能为每个作业引入前面所述的动态优先权,并使作业的优先级随着等待时间的增加而以速率a 提高,则长作业在等待一定的时间后,必然有机会分配到处理机。该优先权的变化规律可描述为:
由于等待时间与服务时间之和就是系统对该作业的响应时间,故该优先权又相当于响应比RP。据此,又可表示为:
由上式可以看出:
(1) 如果作业的等待时间相同,则要求服务的时间愈短,其优先权愈高,因而该算法有利于短作业。
(2) 当要求服务的时间相同时,作业的优先权决定于其等待时间,等待时间愈长,其优先权愈高,因而它实现的是先来先服务。
(3) 对于长作业,作业的优先级可以随等待时间的增加而提高,当其等待时间足够长时,其优先级便可升到很高,从而也可获得处理机。简言之,该算法既照顾了短作业,又考虑了作业到达的先后次序,不会使长作业长期得不到服务。因此,该算法实现了一种较好的折衷。当然,在利用该算法时,每要进行调度之前,都须先做响应比的计算,这会增加系统开销。
三、基于时间片的轮转调度算法
1.时间片轮转法
1) 基本原理
在早期的时间片轮转法中,系统将所有的就绪进程按先来先服务的原则排成一个队列,每次调度时,把CPU 分配给队首进程,并令其执行一个时间片。时间片的大小从几ms 到几百ms。当执行的时间片用完时,由一个计时器发出时钟中断请求,调度程序便据此信号来停止该进程的执行,并将它送往就绪队列的末尾;然后,再把处理机分配给就绪队列中新的队首进程,同时也让它执行一个时间片。这样就可以保证就绪队列中的所有进程在一给定的时间内均能获得一时间片的处理机执行时间。换言之,系统能在给定的时间内响应所有用户的请求。
2.多级反馈队列调度算法
前面介绍的各种用作进程调度的算法都有一定的局限性。如短进程优先的调度算法,仅照顾了短进程而忽略了长进程,而且如果并未指明进程的长度,则短进程优先和基于进程长度的抢占式调度算法都将无法使用。而多级反馈队列调度算法则不必事先知道各种进程所需的执行时间,而且还可以满足各种类型进程的需要,因而它是目前被公认的一种较好的进程调度算法。在采用多级反馈队列调度算法的系统中,调度算法的实施过程如下所述。
(1) 应设置多个就绪队列,并为各个队列赋予不同的优先级。第一个队列的优先级最高,第二个队列次之,其余各队列的优先权逐个降低。该算法赋予各个队列中进程执行时间片的大小也各不相同,在优先权愈高的队列中,为每个进程所规定的执行时间片就愈小。例如,第二个队列的时间片要比第一个队列的时间片长一倍,……,第i+1个队列的时间片要比第i个队列的时间片长一倍。
(2) 当一个新进程进入内存后,首先将它放入第一队列的末尾,按FCFS原则排队等待调度。当轮到该进程执行时,如它能在该时间片内完成,便可准备撤离系统;如果它在一个时间片结束时尚未完成,调度程序便将该进程转入第二队列的末尾,再同样地按FCFS原则等待调度执行;如果它在第二队列中运行一个时间片后仍未完成,再依次将它放入第三队列,……,如此下去,当一个长作业(进程)从第一队列依次降到第n队列后,在第n 队列便采取按时间片轮转的方式运行。
(3) 仅当第一队列空闲时,调度程序才调度第二队列中的进程运行;仅当第1~(i-1)队列均空时,才会调度第i队列中的进程运行。如果处理机正在第i队列中为某进程服务时,又有新进程进入优先权较高的队列(第1~(i-1)中的任何一个队列),则此时新进程将抢占正在运行进程的处理机,即由调度程序把正在运行的进程放回到第i队列的末尾,把处理机分配给新到的高优先权进程。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)