nwc是什么软件?

nwc是什么软件?,第1张

分类: 电脑/网络

问题描述:

这个应该是属于音乐方面的软件,但我安装不到,知道的电脑高手告诉我好吗?谢谢啦~

解析:

、NWC可以干什么?

1、 平差常见的平面控制网:三角网;三边网;边角网;大地四边形;中点多边形;线型锁;附和导线,闭和导线,无定向导线,支导线,导线网;混合网等等。基本上,只要存在一个已知点,能够算出的控制网,NWC都可以处理。

2、 常见的水准网有附和(闭和)水准路线,水准网等。

二、NWC有什么特点?

3、 NWC采用附条件的间接平差模型设计。既可以是角度平差,也可以是间接平差。

4、 NWC以其高度智能的算法,独特的“绘制草图->输入观测数据”的观测数据输入法,自动分析组成观测方向,自动组成测站信息。NWC也可以采用文本格式数据。

5、 NWC具有自动搜寻附和线路,闭和环路,三角形闭和差功能。独具特色的是,NWC具有自定义线路功能。

6、 NWC具有椭球面方向、边长归算到高斯平面的功能。

7、 NWC提供全面的精度分析,完善的报表输出。

8、 NWC提供强大的、有针对性的控制网图形编辑,具有任意步骤的“撤消”和“恢复” *** 作,具有与常见绘图软件一致的图形缩放 *** 作,一致的点捕捉功能。具有图形打印以及保存为位图的功能。

间接平差原理是在确定多个未知量的最或然值时,选择它们之间不存在任何条件关系的独立量作为未知量组成用未知量表达测量的函数关系、列出误差方程式,按最小二乘法原理求得未知量的最或然值的平差方法。

间接平差为平差计算最常用的方法,其数学模型比较简单,便于评定平差值及其函数的精度。

工程施工过程中,常常会遇到不同坐标系统间,坐标转换的问题。目前国内常见的转换有以下几种:1,大地坐标(BLH)对平面直角坐标(XYZ);2,北京54全国80及WGS84坐标系的相互转换;3,任意两空间坐标系的转换。其中第2类可归入第三类中。所谓坐标转换的过程就是转换参数的求解过程。常用的方法有三参数法、四参数法和七参数法。以下对上述三种情况作详细描述如下:

1,大地坐标(BLH)对平面直角坐标(XYZ)

常规的转换应先确定转换参数,即椭球参数、分带标准(3度,6度)和中央子午线的经度。椭球参数就是指平面直角坐标系采用什么样的椭球基准,对应有不同的长短轴及扁率。一般的工程中3度带应用较为广泛。对于中央子午线的确定有两种方法,一是取平面直角坐标系中Y坐标的前两位*3,即可得到对应的中央子午线的经度。如x=3250212m,y=395121123m,则中央子午线的经度=39*3=117度。另一种方法是根据大地坐标经度,如果经度是在155.5~185.5度之间,那么对应的中央子午线的经度=(155.5+185.5)/2=117度,其他情况可以据此3度类推。

另外一些工程采用自身特殊的分带标准,则对应的参数确定不在上述之列。

确定参数之后,可以用软件进行转换,以下提供坐标转换的程序下载。

2,北京54全国80及WGS84坐标系的相互转换

这三个坐标系统是当前国内较为常用的,它们均采用不同的椭球基准。

其中北京54坐标系,属三心坐标系,大地原点在苏联的普而科沃,长轴6378245m,短轴6356863,扁率1/298.3;西安80坐标系,属三心坐标系,大地原点在陕西省径阳县永乐镇,长轴6378140m,短轴6356755,扁率1/298.25722101;WGS84坐标系,长轴6378137.000m,短轴6356752.314,扁率1/298.257223563。由于采用的椭球基准不一样,并且由于投影的局限性,使的全国各地并不存在一至的转换参数。对于这种转换由于量较大,有条件的话,一般都采用GPS联测已知点,应用GPS软件自动完成坐标的转换。当然若条件不许可,且有足够的重合点,也可以进行人工解算。详细方法见第三类。

3,任意两空间坐标系的转换

由于测量坐标系和施工坐标系采用不同的标准,要进行精确转换,必须知道至少3个重合点(即为在两坐标系中坐标均为已知的点。采用布尔莎模型进行求解。布尔莎公式:

对该公式进行变换等价得到:

解算这七个参数,至少要用到三个已知点(2个坐标系统的坐标都知道),采用间接平差模型进行解算:

其中: V 为残差矩阵

X 为未知七参数

A 为系数矩阵

解之:L 为闭合差

解得七参数后,利用布尔莎公式就可以进行未知点的坐标转换了,每输入一组坐标值,就能求出它在新坐标系中的坐标。 但是要想GPS观测成果用于工程或者测绘,还需要将地方直角坐标转换为大地坐标,最后还要转换为平面高斯坐标。

上述方法类同于我们的间接平差,解算起来较复杂,以下提供坐标转换程序,只需输入三个已知点的坐标即可求解出坐标转换的七个参数。如果已知点的数量较多,可以进行参数间的平差运算,则精度更高。

当已知点的数量只有两个时,我们可以采用简单变换法,此法较为方便易行,适于手算,只是精度受到一定的限制。

详细解算方程如下:

式中调x,y和x\'、y\'分别为新旧(或;旧新)网重合点的坐标,a、b、、k为变换参数,显然要解算出a、b、、k,必须至少有两个重合点,列出四个方程。

即可进行通常的参数平差,解求a、x、b、c、d各参数值。将之代人(3)式,可得各拟合点的残差(改正数)代人(2)式,可得待换点的坐标。

求出解算参数之后,可在Excel中,进行其余坐标的转换。

上次笔者用此法进行过80和54坐标的转换,由于当时没有多余的点可供验证和平差,所以转换精度不得而知,但转换之后各点的相对位置不变。估计,实际的转换误差应该是10m量级的。

还有一些情况是先将大地坐标转换 为直角坐标,然后进行相关转换


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/11090429.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-13
下一篇 2023-05-13

发表评论

登录后才能评论

评论列表(0条)

保存