看用于什么场合,控制精度要求。一般加温控制,如果控制误差要求为5%,测比例设为10%,积分时间需要测量被控体在5%的温度变化内所需的时间(从-5%升到5%的时间)与工艺的对误差允许的时间,一般取变化时间的1/3左右。
微分主要是为了避免过冲,如果对过冲要求比较在意,则取变化时间,如要求稳定时间较短,可取1/2变化时间。现在的智能数字温控仪一般都有自整定(AT)功能。在初次使用时按一下AT键,PID参数将在三次调整周期内自动设定完成。
手动对PID进行整定时,总是先调节比例环节,然后一般是调节积分环知节,最后调节微分环节。温度控制中控制功率和温度之间具有积分关系,为多容系统,积分环节应用不当会造成系统不稳定。
许多文献对PID整定都给出推荐参数。PID的调节可以先确定I值,道然后可以根据实测温度与设定温度值调节PD值,那样就方便了,千万不要一起调,那样容易造成混乱。
扩展资料:
技术参数:
1、双屏LED数码显示,且带有光柱模拟指示功能(0~100%)。
2、具备36种信号输入功能,可任意选择输入信号类型0.2%级测量精度。
3、具备“版上下限报警”、“偏差报警”、“LBA报警”、“闪烁报警”等报警功能,带LED报警灯指示。
4、可带一路PID控制输出和一路模拟量变送输出,具有电流、电压、SSR驱动、单/三相可控硅过零触发、继电器接点等输出控制方式可选择。
PID温控仪权 5、带PID参数自整定功能,控制输出手动/自动无扰切换功能,控制准确且无超调。
参考资料:百度百科-PID温控仪
//PID算法温控C语言2008-08-17 18:58#include<reg51.h>
#include<intrins.h>
#include<math.h>
#include<string.h>
struct PID {
unsigned int SetPoint// 设定目标 Desired Value
unsigned int Proportion// 比例常数 Proportional Const
unsigned int Integral// 积分常数 Integral Const
unsigned int Derivative// 微分常数 Derivative Const
unsigned int LastError// Error[-1]
unsigned int PrevError// Error[-2]
unsigned int SumError// Sums of Errors
}
struct PID spid// PID Control Structure
unsigned int rout// PID Response (Output)
unsigned int rin// PID Feedback (Input)
sbit data1=P1^0
sbit clk=P1^1
sbit plus=P2^0
sbit subs=P2^1
sbit stop=P2^2
sbit output=P3^4
sbit DQ=P3^3
unsigned char flag,flag_1=0
unsigned char high_time,low_time,count=0//占空比调节参数
unsigned char set_temper=35
unsigned char temper
unsigned char i
unsigned char j=0
unsigned int s
/***********************************************************
延时子程序,延时时间以12M晶振为准,延时时间为30us×time
***********************************************************/
void delay(unsigned char time)
{
unsigned char m,n
for(n=0n<timen++)
for(m=0m<2m++){}
}
/***********************************************************
写一位数据子程序
***********************************************************/
void write_bit(unsigned char bitval)
{
EA=0
DQ=0/*拉低DQ以开始一个写时序*/
if(bitval==1)
{
_nop_()
DQ=1/*如要写1,则将总线置高*/
}
delay(5)/*延时90us供DA18B20采样*/
DQ=1/*释放DQ总线*/
_nop_()
_nop_()
EA=1
}
/***********************************************************
写一字节数据子程序
***********************************************************/
void write_byte(unsigned char val)
{
unsigned char i
unsigned char temp
EA=0 /*关中断*/
TR0=0
for(i=0i<8i++) /*写一字节数据,一次写一位*/
{
temp=val>>i/*移位 *** 作,将本次要写的位移到最低位*/
temp=temp&1
write_bit(temp)/*向总线写该位*/
}
delay(7)/*延时120us后*/
// TR0=1
EA=1/*开中断*/
}
/***********************************************************
读一位数据子程序
***********************************************************/
unsigned char read_bit()
{
unsigned char i,value_bit
EA=0
DQ=0/*拉低DQ,开始读时序*/
_nop_()
_nop_()
DQ=1/*释放总线*/
for(i=0i<2i++){}
value_bit=DQ
EA=1
return(value_bit)
}
/***********************************************************
读一字节数据子程序
***********************************************************/
unsigned char read_byte()
{
unsigned char i,value=0
EA=0
for(i=0i<8i++)
{
if(read_bit()) /*读一字节数据,一个时序中读一次,并作移位处理*/
value|=0x01<<i
delay(4)/*延时80us以完成此次都时序,之后再读下一数据*/
}
EA=1
return(value)
}
/***********************************************************
复位子程序
***********************************************************/
unsigned char reset()
{
unsigned char presence
EA=0
DQ=0/*拉低DQ总线开始复位*/
delay(30)/*保持低电平480us*/
DQ=1/*释放总线*/
delay(3)
presence=DQ/*获取应答信号*/
delay(28)/*延时以完成整个时序*/
EA=1
return(presence)/*返回应答信号,有芯片应答返回0,无芯片则返回1*/
}
/***********************************************************
获取温度子程序
***********************************************************/
void get_temper()
{
unsigned char i,j
do
{
i=reset()/*复位*/
}while(i!=0)/*1为无反馈信号*/
i=0xcc/*发送设备定位命令*/
write_byte(i)
i=0x44/*发送开始转换命令*/
write_byte(i)
delay(180)/*延时*/
do
{
i=reset()/*复位*/
}while(i!=0)
i=0xcc/*设备定位*/
write_byte(i)
i=0xbe/*读出缓冲区内容*/
write_byte(i)
j=read_byte()
i=read_byte()
i=(i<<4)&0x7f
s=(unsigned int)(j&0x0f)
s=(s*100)/16
j=j>>4
temper=i|j/*获取的温度放在temper中*/
}
/*====================================================================================================
Initialize PID Structure
=====================================================================================================*/
void PIDInit (struct PID *pp)
{
memset ( pp,0,sizeof(struct PID))
}
/*====================================================================================================
PID计算部分
=====================================================================================================*/
unsigned int PIDCalc( struct PID *pp, unsigned int NextPoint )
{
unsigned int dError,Error
Error = pp->SetPoint - NextPoint// 偏差
pp->SumError += Error// 积分
dError = pp->LastError - pp->PrevError// 当前微分
pp->PrevError = pp->LastError
pp->LastError = Error
return (pp->Proportion * Error//比例
+ pp->Integral * pp->SumError //积分项
+ pp->Derivative * dError)// 微分项
}
/***********************************************************
温度比较处理子程序
***********************************************************/
compare_temper()
{
unsigned char i
if(set_temper>temper)
{
if(set_temper-temper>1)
{
high_time=100
low_time=0
}
else
{
for(i=0i<10i++)
{ get_temper()
rin = s// Read Input
rout = PIDCalc ( &spid,rin )// Perform PID Interation
}
if (high_time<=100)
high_time=(unsigned char)(rout/800)
else
high_time=100
low_time= (100-high_time)
}
}
else if(set_temper<=temper)
{
if(temper-set_temper>0)
{
high_time=0
low_time=100
}
else
{
for(i=0i<10i++)
{ get_temper()
rin = s// Read Input
rout = PIDCalc ( &spid,rin )// Perform PID Interation
}
if (high_time<100)
high_time=(unsigned char)(rout/10000)
else
high_time=0
low_time= (100-high_time)
}
}
// else
// {}
}
/*****************************************************
T0中断服务子程序,用于控制电平的翻转 ,40us*100=4ms周期
******************************************************/
void serve_T0() interrupt 1 using 1
{
if(++count<=(high_time))
output=1
else if(count<=100)
{
output=0
}
else
count=0
TH0=0x2f
TL0=0xe0
}
/*****************************************************
串行口中断服务程序,用于上位机通讯
******************************************************/
void serve_sio() interrupt 4 using 2
{
/* EA=0
RI=0
i=SBUF
if(i==2)
{
while(RI==0){}
RI=0
set_temper=SBUF
SBUF=0x02
while(TI==0){}
TI=0
}
else if(i==3)
{
TI=0
SBUF=temper
while(TI==0){}
TI=0
}
EA=1*/
}
void disp_1(unsigned char disp_num1[6])
{
unsigned char n,a,m
for(n=0n<6n++)
{
// k=disp_num1[n]
for(a=0a<8a++)
{
clk=0
m=(disp_num1[n]&1)
disp_num1[n]=disp_num1[n]>>1
if(m==1)
data1=1
else
data1=0
_nop_()
clk=1
_nop_()
}
}
}
/*****************************************************
显示子程序
功能:将占空比温度转化为单个字符,显示占空比和测得到的温度
******************************************************/
void display()
{
unsigned char code number[]={0xfc,0x60,0xda,0xf2,0x66,0xb6,0xbe,0xe0,0xfe,0xf6}
unsigned char disp_num[6]
unsigned int k,k1
k=high_time
k=k%1000
k1=k/100
if(k1==0)
disp_num[0]=0
else
disp_num[0]=0x60
k=k%100
disp_num[1]=number[k/10]
disp_num[2]=number[k%10]
k=temper
k=k%100
disp_num[3]=number[k/10]
disp_num[4]=number[k%10]+1
disp_num[5]=number[s/10]
disp_1(disp_num)
}
/***********************************************************
主程序
***********************************************************/
main()
{
unsigned char z
unsigned char a,b,flag_2=1,count1=0
unsigned char phil[]={2,0xce,0x6e,0x60,0x1c,2}
TMOD=0x21
TH0=0x2f
TL0=0x40
SCON=0x50
PCON=0x00
TH1=0xfd
TL1=0xfd
PS=1
EA=1
EX1=0
ET0=1
ES=1
TR0=1
TR1=1
high_time=50
low_time=50
PIDInit ( &spid )// Initialize Structure
spid.Proportion = 10// Set PID Coefficients
spid.Integral = 8
spid.Derivative =6
spid.SetPoint = 100// Set PID Setpoint
while(1)
{
if(plus==0)
{
EA=0
for(a=0a<5a++)
for(b=0b<102b++){}
if(plus==0)
{
set_temper++
flag=0
}
}
else if(subs==0)
{
for(a=0a<5a++)
for(b=0a<102b++){}
if(subs==0)
{
set_temper--
flag=0
}
}
else if(stop==0)
{
for(a=0a<5a++)
for(b=0b<102b++){}
if(stop==0)
{
flag=0
break
}
EA=1
}
get_temper()
b=temper
if(flag_2==1)
a=b
if((abs(a-b))>5)
temper=a
else
temper=b
a=temper
flag_2=0
if(++count1>30)
{
display()
count1=0
}
compare_temper()
}
TR0=0
z=1
while(1)
{
EA=0
if(stop==0)
{
for(a=0a<5a++)
for(b=0b<102b++){}
if(stop==0)
disp_1(phil)
// break
}
EA=1
}
}
//DS18b20 子程序
#include <REG52.H>
sbit DQ=P2^1 //定义端口
typedef unsigned char byte
typedef unsigned int word
//延时
void delay(word useconds)
{
for(useconds>0useconds--)
}
//复位
byte ow_reset(void)
{
byte presence
DQ=0//DQ低电平
delay(29) //480us
DQ=1//DQ高电平
delay(3)//等待
presence=DQ//presence信号
delay(25)
return(presence)
} //0允许,1禁止
//从1-wire 总线上读取一个字节
byte read_byte(viod)
{
byte i
byte value=0
for (i=8i>0i--)
{
value>>=1
DQ=0
DQ=1
delay(1)
if(DQ)value|=0x80
delay(6)
}
return(value)
}
//向1-wire总线上写一个字节
void write_byte(char val)
{
byte i
for (i=8i>0i--) //一次写一个字节
{
DQ=0
DQ=val&0x01
delay(5)
DQ=1
val=val/2
}
delay(5)
}
//读取温度
char Read_Temperature(void)
{
union{
byte c[2]
int x
}temp
ow_reset()
write_byte(0xcc)
write_byte(0xBE)
temp.c[1]=read_byte()
temp.c[0]=read_byte()
ow_reset()
write_byte(0xCC)
write_byte(0x44)
return temp.x/2
}
经过本人发表的上一篇文章《几种温度算法的比较与总结》可知,分段式PID算法既可以提高温控系统的响应速度,又可以提高温控系统的控温精度,现将以增量式PID算法为例总结一下其具体的实现步骤或过程,希望能够给奋战在PID算法的同仁们提供一些有价值的内容。
一、温控模型的建立
是选择一阶延迟控温系统还是选择二阶延迟控温系统,需要根据自己的实际控温系统来确定;
二、温控模型中K、T、τ的确定
温控模型一旦确定,接下来就是确定K、T、τ的值。温控模型中K、T、τ等值的确定方法有以下几种方法:
1、系统辨识法
设定采集数据的时间间隔,PWM波形的占空比等参数后,记录随时间变化的温度数据(注意:是在开环状态下),温度数据量越多越好,根据测试的数据利用Matlab的系统辨识工具箱进行辨识求得K、T、τ的值。
2、公式计算法1
对温控系统输入固定占空比的PWM波,以固定时间间隔(比如1s)采集记录温度数据,然后利用两点法计算公式计算出K、T、τ的值。
K = (y(∞) - y(0))/(Δu);
T = 1.5*(t(0.632) - t(0.28));
τ = 1.5 * ( t(0.28) - t(0.632)/3)。
注意:(1)、y(0)为室温值,y(∞)温度稳定后的温度值。
(2)、Δy = y(∞) - y(0)。
(3)、 t(0.28)为室温升温至y(0) +0.28* Δy的时间值。
(4)、t(0.632)为室温升温至y(0) +0.632* Δy的时间值。
3、公式计算法2
原理同公式计算法1,只不过选取的参考点不同,这里选取的参考点是t(0.39)和t(0.632),K的计算公式同公式计算法1,以下是T和τ的计算公式:
T = 2*(t(0.632) - t(0.28));
τ = 2* t(0.28) - t(0.632)。
三、P、I、D参数的确定
1、Matlab仿真试验法
通过在Matlab中输入温控模型和建立PID控制模块,然后仿真查看温控的曲线情况确定PID参数。
2、公式计算法
根据以上测得的温度数据,由Z-N或C-C公式算出PID参数。
3、现场调试法
根据调试人员对PID参数整定的经验调试PID参数,通过现场PID的控温情况确定PID参数值。
通过以上三种PID参数整定方法的比较,当然还有其他的有待验证其可行性的PID参数整定方法,个人觉得综合以上三种PID参数整定方法,最好的PID参数整定方法是:先用公式计算法计算出PID参数值,然后在Matlab中验证整定的PID参数情况,最后再根据现场的实际控温情况进行微调,最终确定PID参数的值。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)