中断是指计算机运行过程中,出现某些意外情况需主机干预时,机器能自动停止正在运行的程序并转入处理新情况的程序,处理完毕后又返回原被暂停的程序继续运行。
中断流程图如下:
中断过程
按照事件发生的顺序,中断过程包括:
①中断源发出中断请求
②判断当前处理机是否允许中断和该中断源是否被屏蔽
③优先权排队
④处理机执行完当前指令或当前指令无法执行完,则立即停止当前程序,保护断点地址和处理机当前状态,转入相应的中断服务程序
⑤执行中断服务程序
⑥恢复被保护的状态,执行“中断返回”指令回到被中断的程序或转入其他程序。
上述过程中前四项 *** 作是由硬件完成的,后两项是由软件完成的。
扩展资料
众所周知,处理器的速度跟外围硬件设备的速度往往不在一个数量级上,因此,如果内核采取让处理器向硬件发出一个请求,然后专门等待回应的办法,显然降低内核效率。
既然硬件的响应这么慢,那么内核就应该在此期间处理其他事务,等到硬件真正完成了请求的 *** 作之后,再回过头来对它进行处理。想要实现这种功能,轮询(polling)可能会是一种解决办法。可以让内核定期对设备的状态进行查询,然后做出相应的处理。
不过这种方法很可能会让那个内核做不少无用功,因为无论硬件设备是正在忙碌着完成任务还是已经大功告成,轮询总会周期性的重复执行。更好的办法是由我们来提供一种机制,让硬件在需要的时候再向内核发出信号(变内核主动为硬件主动),这就是中断机制。
中断使得硬件得以与处理器进行通信。举个例子,在你敲打键盘的时候,键盘控制器(控制键盘的硬件设备)会发送一个中断,通知 *** 作系统有键按下。中断本质是一种特殊的电信号,由硬件设备发向处理器。
处理器接受到中断后,会马上向 *** 作系统反映此信号的到来,然后就由os负责处理这些新到来的数据。硬件设备生成中断的时候并不考虑与处理器的时钟同步——换句话说就是中断随时可以产生。因此,内核随时可能因为新到来的中断而被打断。
不同的设备对应的中断不同,而每个中断都通过一个惟一的数字标识。因此,来自键盘的中断就有别于来自硬盘的中断,从而使得 *** 作系统能够对中断进行区分,并知道哪个硬件设备产生了哪个中断。这样, *** 作系统才能给不同的中断提供不同的中断处理程序。
在它执行程序的时候,如果有另外的事件发生(比如用户又打开了一个程序)那么这时候就需要由计算机系统的中断机制来处理了。
中断机制包括硬件的中断装置和 *** 作系统的中断处理服务程序。
让硬件在需要的时候再向内核发出信号。
参考资料来源:百度百科-中断机制
参考资料来源:百度百科-中断
一般中断处理的主要步骤分别是中断请求、中断判优、中断响应、中断处理和中断返回。在微机系统中,对于外部中断,中断请求信号是由外部设备产生,并施加到CPU的NMI或INTR引脚上,CPU通过不断地检测NMI和INTR引脚信号来识别是否有中断请求发生。对于内部中断,中断请求方式不需要外部施加信号激发,而是通过内部中断控制逻辑去调用。无论是外部中断还是内部中断,中断处理过程都要经历以下步骤:请求中断→响应中断→关闭中断→保留断点→中断源识别→保护现场→中断服务子程序→恢复现场→中断返回。
请求中断
当某一中断源需要CPU为其进行中断服务时,就输出中断请求信号,使中断控制系统的中断请求触发器置位,向CPU请求中断。系统要求中断请求信号一直保持到CPU对其进行中断响应为止。
中断响应
CPU对系统内部中断源提出的中断请求必须响应,而且自动取得中断服务子程序的入口地址,执行中断服务子程序。对于外部中断,CPU在执行当前指令的最后一个时钟周期去查询INTR引脚,若查询到中断请求信号有效,同时在系统开中断(即IF=1)的情况下,CPU向发出中断请求的外设回送一个低电平有效的中断应答信号,作为对中断请求INTR的应答,系统自动进入中断响应周期。
关闭中断
CPU响应中断后,输出中断响应信号,自动将状态标志寄存器FR或EFR的内容压入堆栈保护起来,然后将FR或EFR中的中断标志位IF与陷阱标志位TF清零,从而自动关闭外部硬件中断。因为CPU刚进入中断时要保护现场,主要涉及堆栈 *** 作,此时不能再响应中断,否则将造成系统混乱。
保护断点
保护断点就是将CS和IP/EIP的当前内容压入堆栈保存,以便中断处理完毕后能返回被中断的原程序继续执行,这一过程也是由CPU自动完成。
中断源识别
当系统中有多个中断源时,一旦有中断请求,CPU必须确定是哪一个中断源提出的中断请求,并由中断控制器给出中断服务子程序的入口地址,装入CS与IP/EIP两个寄存器。CPU转入相应的中断服务子程序开始执行。
保护现场
主程序和中断服务子程序都要使用CPU内部寄存器等资源,为使中断处理程序不破坏主程序中寄存器的内容,应先将断点处各寄存器的内容压入堆栈保护起来,再进入的中断处理。现场保护是由用户使用PUSH指令来实现的。
中断服务
中断服务是执行中断的主体部分,不同的中断请求,有各自不同的中断服务内容,需要根据中断源所要完成的功能,事先编写相应的中断服务子程序存入内存,等待中断请求响应后调用执行。
恢复现场
当中断处理完毕后,用户通过POP指令将保存在堆栈中的各个寄存器的内容d出,即恢复主程序断点处寄存器的原值。
中断返回
在中断服务子程序的最后要安排一条中断返回指令IRET,执行该指令,系统自动将堆栈内保存的IP/EIP和CS值d出,从而恢复主程序断点处的地址值,同时还自动恢复标志寄存器FR或EFR的内容,使CPU转到被中断的程序中继续执行。
1)中断响应的事前准备:
系统要想能够应对各种不同的中断信号,总的来看就是需要知道每种信号应该由哪个中断服务程序负责以及这些中断服务程序具体是如何工作的。系统只有事前对这两件事都知道得很清楚,才能正确地响应各种中断信号和异常。
2) CPU检查是否有中断/异常信号
CPU在执行完当前程序的每一条指令后,都会去确认在执行刚才的指令过程中中断控制器(如:8259A)是否发送中断请求过来,如果有那么CPU就会在相应的时钟脉冲到来时从总线上读取中断请求对应的中断向量。
对于异常和系统调用那样的软中断,因为中断向量是直接给出的,所以和通过IRQ(中断请求)线发送的硬件中断请求不同,不会再专门去取其对应的中断向量。
3) 根据中断向量到IDT表中取得处理这个向量的中断程序的段选择符
CPU根据得到的中断向量到IDT表里找到该向量对应的中断描述符,中断描述符里保存着中断服务程序的段选择符。
4) 根据取得的段选择符到GDT中找相应的段描述符
CPU使用IDT查到的中断服务程序的段选择符从GDT中取得相应的段描述符,段描述符里保存了中断服务程序的段基址和属性信息,此时CPU就得到了中断服务程序的起始地址。
5) CPU根据特权级的判断设定即将运行的中断服务程序要使用的栈的地址
CPU会根据CPL和中断服务程序段描述符的DPL信息确认是否发生了特权级的转换,比如当前程序正运行在用户态,而中断程序是运行在内核态的,则意味着发生了特权级的转换,这时CPU会从当前程序的TSS信息(该信息在内存中的首地址存在TR寄存器中)里取得该程序的内核栈地址。
6) 保护当前程序的现场
CPU开始利用栈保护被暂停执行的程序的现场:依次压入当前程序使用的eflags,cs,eip,errorCode(如果是有错误码的异常)信息。
7) 跳转到中断服务程序的第一条指令开始执行
CPU利用中断服务程序的段描述符将其第一条指令的地址加载到cs和eip寄存器中,开始执行中断服务程序。这意味着先前的程序被暂停执行,中断服务程序正式开始工作。
8) 中断服务程序处理完毕,恢复执行先前中断的程序
在每个中断服务程序的最后,必须有中断完成返回先前程序的指令,这就是iret(或iretd)。程序执行这条返回指令时,会从栈里d出先前保存的被暂停程序的现场信息,即eflags,cs,eip重新开始执行。
扩展资料
硬件中断导致处理器通过一个上下文切换(context switch)来保存执行状态(以程序计数器和程序状态字等寄存器信息为主);软件中断则通常作为CPU指令集中的一个指令,以可编程的方式直接指示这种上下文切换,并将处理导向一段中断处理代码。
中断在计算机多任务处理,尤其是实时系统中尤为有用。这样的系统,包括运行于其上的 *** 作系统,也被称为“中断驱动的”(interrupt-driven)。
中断使CPU中止正在执行的程序而转去处理特殊事件的 *** 作,这些引起中断的事件称为中断源,它们可能是来自外设的输入输出请求,也可能是计算机的一些异常事故或其它内部原因。
在运行一个程序的过程中,断续地以“插入”方式执行一些完成特定处理功能的程序段,这种处理方式称为中断。
参考资料来源:百度百科-中断处理
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)