c语言,如何产生随机数

c语言,如何产生随机数,第1张

本文由青松原创并依GPL-V2及其后续版本发放,转载请注明出处且应包含本行声明。\x0d\x0a\x0d\x0aC++中常用rand()函数生成随机数,但严格意义上来讲生成的只是伪随机数(pseudo-random integral number)。生成随机数时需要我们指定一个种子,如果在程序内循环,那么下一次生成随机数时调用上一次的结果作为种子。但如果分两次执行程序,那么由于种子相同,生成的“随机数”也是相同的。\x0d\x0a\x0d\x0a在工程应用时,我们一般将系统当前时间(Unix时间)作为种子,这样生成的随机数更接近于实际意义上的随机数。给一下例程如下:\x0d\x0a\x0d\x0a#include \x0d\x0a#include \x0d\x0a#include \x0d\x0ausing namespace std\x0d\x0a\x0d\x0aint main()\x0d\x0a{\x0d\x0adouble random(double,double)\x0d\x0asrand(unsigned(time(0)))\x0d\x0afor(int icnt = 0icnt != 10++icnt)\x0d\x0acout <<"No." <<icnt+1 <<": " <<int(random(0,10))<<endl\x0d\x0areturn 0\x0d\x0a}\x0d\x0a\x0d\x0adouble random(double start, double end)\x0d\x0a{\x0d\x0areturn start+(end-start)*rand()/(RAND_MAX + 1.0)\x0d\x0a}\x0d\x0a/* 运行结果\x0d\x0a* No.1: 3\x0d\x0a* No.2: 9\x0d\x0a* No.3: 0\x0d\x0a* No.4: 9\x0d\x0a* No.5: 5\x0d\x0a* No.6: 6\x0d\x0a* No.7: 9\x0d\x0a* No.8: 2\x0d\x0a* No.9: 9\x0d\x0a* No.10: 6\x0d\x0a*/\x0d\x0a利用这种方法能不能得到完全意义上的随机数呢?似乎9有点多哦?却没有1,4,7?!我们来做一个概率实验,生成1000万个随机数,看0-9这10个数出现的频率是不是大致相同的。程序如下:\x0d\x0a#include \x0d\x0a#include \x0d\x0a#include \x0d\x0a#include \x0d\x0ausing namespace std\x0d\x0a\x0d\x0aint main()\x0d\x0a{\x0d\x0adouble random(double,double)\x0d\x0aint a[10] = \x0d\x0aconst int Gen_max = 10000000\x0d\x0asrand(unsigned(time(0)))\x0d\x0a\x0d\x0afor(int icnt = 0icnt != Gen_max++icnt)\x0d\x0aswitch(int(random(0,10)))\x0d\x0a{\x0d\x0acase 0: a[0]++break\x0d\x0acase 1: a[1]++break\x0d\x0acase 2: a[2]++break\x0d\x0acase 3: a[3]++break\x0d\x0acase 4: a[4]++break\x0d\x0acase 5: a[5]++break\x0d\x0acase 6: a[6]++break\x0d\x0acase 7: a[7]++break\x0d\x0acase 8: a[8]++break\x0d\x0acase 9: a[9]++break\x0d\x0adefault: cerr <<"Error!" <<endlexit(-1)\x0d\x0a}\x0d\x0a\x0d\x0afor(int icnt = 0icnt != 10++icnt)\x0d\x0acout <<icnt <<": " <<setw(6) <<setiosflags(ios::fixed) <<setprecision(2) <<double(a[icnt])/Gen_max*100 <<"%" <<endl\x0d\x0a\x0d\x0areturn 0\x0d\x0a}\x0d\x0a\x0d\x0adouble random(double start, double end)\x0d\x0a{\x0d\x0areturn start+(end-start)*rand()/(RAND_MAX + 1.0)\x0d\x0a}\x0d\x0a/* 运行结果\x0d\x0a* 0: 10.01%\x0d\x0a* 1: 9.99%\x0d\x0a* 2: 9.99%\x0d\x0a* 3: 9.99%\x0d\x0a* 4: 9.98%\x0d\x0a* 5: 10.01%\x0d\x0a* 6: 10.02%\x0d\x0a* 7: 10.01%\x0d\x0a* 8: 10.01%\x0d\x0a* 9: 9.99%\x0d\x0a*/\x0d\x0a可知用这种方法得到的随机数是满足统计规律的。\x0d\x0a\x0d\x0a另:在Linux下利用GCC编译程序,即使我执行了1000000次运算,是否将random函数定义了inline函数似乎对程序没有任何影响,有理由相信,GCC已经为我们做了优化。但是冥冥之中我又记得要做inline优化得加O3才行...\x0d\x0a\x0d\x0a不行,于是我们把循环次数改为10亿次,用time命令查看执行时间:\x0d\x0achinsung@gentoo ~/workspace/test/Debug $ time ./test \x0d\x0a0: 10.00%\x0d\x0a1: 10.00%\x0d\x0a2: 10.00%\x0d\x0a3: 10.00%\x0d\x0a4: 10.00%\x0d\x0a5: 10.00%\x0d\x0a6: 10.00%\x0d\x0a7: 10.00%\x0d\x0a8: 10.00%\x0d\x0a9: 10.00%\x0d\x0a\x0d\x0areal2m7.768s\x0d\x0auser2m4.405s\x0d\x0asys 0m0.038s\x0d\x0achinsung@gentoo ~/workspace/test/Debug $ time ./test \x0d\x0a0: 10.00%\x0d\x0a1: 10.00%\x0d\x0a2: 10.00%\x0d\x0a3: 10.00%\x0d\x0a4: 10.00%\x0d\x0a5: 10.00%\x0d\x0a6: 10.00%\x0d\x0a7: 10.00%\x0d\x0a8: 10.00%\x0d\x0a9: 10.00%\x0d\x0a\x0d\x0areal2m7.269s\x0d\x0auser2m4.077s\x0d\x0asys 0m0.025s\x0d\x0a\x0d\x0a前一次为进行inline优化的情形,后一次为没有作inline优化的情形,两次结果相差不大,甚至各项指标后者还要好一些,不知是何缘由...

在实际编程中,我们经常需要生成随机数。在c语言中我们通常使用rand方法生成随机数,在调用rand前需要调用srand初始化随机数种子。

电脑:华为MateBook14

系统:Windows10

软件:notepad++等编辑器、gcc编译器1.0

1、使用rand函数生成随机数,rand随机生成一个位于0 ~ RAND_MAX之间的整数。如下图中,我们直接使用rand方法生成10个随机数。

2、程序运行后生成了随机数,但直接使用rand的问题在于,在下次程序调用时,生成的随机数与上次一致。所以,rand函数虽然生成随机数,但可以说是一个伪随机。因为每次调用时,生成数字顺序都是固定的。

3、为了在每次调用时生成不同的随机数,使用srand函数初始化随机数种子。只要随机数种子变化了,那么生成的随机数就会改变。通常,srand使用当前时间作为种子。

4、但使用时间作为随机数种子是否安全呢?我们目前程序执行的速度都太快了,一秒钟对于计算机来说太漫长了。我们将生成随机数的 *** 作定义为函数,然后调用函数两次,看生成的随机数仍然时一样。

5、优化函数也比较简单,在使用时间的基础上,我们还加上一个定增序号。这样能保证就算同一秒钟内多次调用,随机数的种子都是不一样的。

6、通常,我们需要获取一定范围内的随机数。所以,在生成随机数之后我们使用模运算获取对应范围内的数据。如生成0到100内的随机数。

编译环境为:vs2013

产生1到3的整型随机数的代码如下:

#include<stdio.h>

#include<time.h>

#include<stdlib.h>

#define max 3   //这个函数的意义为:随机生成最大的数为3

#define min 1    //这个函数的意义为:随机生成最小的数为1

int main()

{

int num

srand(time(0))

num = rand() % (max - min) + min // 这里的意义,“%”为模运算

printf("随机数为:%d\n", num)

system("pause") //这个代码可以让d出的黑框不会一下就消失

return 0

}

扩展资料:

根据密码学原理,随机数的随机性检验可以分为三个标准:

条件一、统计学伪随机性。统计学伪随机性指的是在给定的随机比特流样本中,1的数量大致等于0的数量,同理,“10”“01”“00”“11”四者数量大致相等。类似的标准被称为统计学随机性。满足这类要求的数字在人类“一眼看上去”是随机的。

条件二、密码学安全伪随机性。其定义为,给定随机样本的一部分和随机算法,不能有效的演算出随机样本的剩余部分。

条件三、真随机性。其定义为随机样本不可重现。实际上只要给定边界条件,真随机数并不存在,可是如果产生一个真随机数样本的边界条件十分复杂且难以捕捉(比如计算机当地的本底辐射波动值),可以认为用这个方法演算出来了真随机数。

随机数分为三类:

①伪随机数:满足第一个条件的随机数。

②密码学安全的伪随机数:同时满足前两个条件的随机数。可以通过密码学安全伪随机数生成器

计算得出。

③真随机数:同时满足三个条件的随机数。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/11145430.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-13
下一篇 2023-05-13

发表评论

登录后才能评论

评论列表(0条)

保存