stata教程:在回归分析中,如果有两个或两个以上的自变量,就称为多元回归。事实上,一种现象常常是与多个因素相联系的,由多个自变量的最优组合共同来预测或估计因变量,比只用一个自变量进行预测或估计更有效,更符合实际。因此多元线性回归比一元线性回归的实用意义更大。
广义最小二乘法是普通最小二乘法的拓展,它允许在误差项存在异方差或自相关,或二者皆有时获得有效的系数估计值。
EViews为我们提供了基于WINDOWS平台的复杂的数据分析、回归及预测工具,通过
EViews能够快速从数据中得到统计关系,并根据这些统计关系进行预测。EViews在系统数
据分析和评价、金融分析、宏观经济预测、模拟、销售预测及成本分析等领域中有着广泛的
应用。
就是用高斯概率密度函数(正态分布曲线)精确地量化事物,将一个事物分解为若干的基于高斯概率密度函数(正态分布曲线)形成的模型。GMMs已经在数值逼近、语音识别、图像分类、图像去噪、图像重构、故障诊断、视频分析、邮件过滤、密度估计、目标识别与跟踪等领域取得了良好的效果。
对图像背景建立高斯模型的原理及过程:图像灰度直方图反映的是图像中某个灰度值出现的频次,也可以认为是图像灰度概率密度的估计。如果图像所包含的目标区域和背景区域相比比较大,且背景区域和目标区域在灰度上有一定的差异,那么该图像的灰度直方图呈现双峰-谷形状。
主要步骤
1、为图像的每个像素点指定一个初始的均值、标准差以及权重。
2、收集N(一般取200以上,否则很难得到像样的结果)帧图像利用在线EM算法得到每个像素点的均值、标准差以及权重)。
3、从N+1帧开始检测,检测的方法:
对每个像素点:
1)将所有的高斯核按照 ω / σ 降序排序
2)选择满足公式的前M个高斯核:M = arg min(ω / σ > T)
3)如果当前像素点的像素值在中有一个满足:就可以认为其为背景点。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)