#include <math.h>
#include <stdio.h>
int brinv(double a[], int n)
{ int *is,*js,i,j,k,l,u,v
double d,p
is=malloc(n*sizeof(int))
js=malloc(n*sizeof(int))
for (k=0k<=n-1k++)
{ d=0.0
for (i=ki<=n-1i++)
for (j=kj<=n-1j++)
{ l=i*n+jp=fabs(a[l])
if (p>d) { d=pis[k]=ijs[k]=j}
}
if (d+1.0==1.0)
{ free(is)free(js)printf("err**not inv\n")
return(0)
}
if (is[k]!=k)
for (j=0j<=n-1j++)
{ u=k*n+jv=is[k]*n+j
p=a[u]a[u]=a[v]a[v]=p
}
if (js[k]!=k)
for (i=0i<=n-1i++)
{ u=i*n+kv=i*n+js[k]
p=a[u]a[u]=a[v]a[v]=p
}
l=k*n+k
a[l]=1.0/a[l]
for (j=0j<=n-1j++)
if (j!=k)
{ u=k*n+ja[u]=a[u]*a[l]}
for (i=0i<=n-1i++)
if (i!=k)
for (j=0j<=n-1j++)
if (j!=k)
{ u=i*n+j
a[u]=a[u]-a[i*n+k]*a[k*n+j]
}
for (i=0i<=n-1i++)
if (i!=k)
{ u=i*n+ka[u]=-a[u]*a[l]}
}
for (k=n-1k>=0k--)
{ if (js[k]!=k)
for (j=0j<=n-1j++)
{ u=k*n+jv=js[k]*n+j
p=a[u]a[u]=a[v]a[v]=p
}
if (is[k]!=k)
for (i=0i<=n-1i++)
{ u=i*n+kv=i*n+is[k]
p=a[u]a[u]=a[v]a[v]=p
}
}
free(is)free(js)
return(1)
}
void brmul(double a[], double b[],int m,int n,int k,double c[])
{ int i,j,l,u
for (i=0i<=m-1i++)
for (j=0j<=k-1j++)
{ u=i*k+jc[u]=0.0
for (l=0l<=n-1l++)
c[u]=c[u]+a[i*n+l]*b[l*k+j]
}
return
}
int main()
{ int i,j
static double a[4][4]={ {0.2368,0.2471,0.2568,1.2671},
{1.1161,0.1254,0.1397,0.1490},
{0.1582,1.1675,0.1768,0.1871},
{0.1968,0.2071,1.2168,0.2271}}
static double b[4][4],c[4][4]
for (i=0i<=3i++)
for (j=0j<=3j++)
b[i][j]=a[i][j]
i=brinv(a,4)
if (i!=0)
{ printf("MAT A IS:\n")
for (i=0i<=3i++)
{ for (j=0j<=3j++)
printf("%13.7e ",b[i][j])
printf("\n")
}
printf("\n")
printf("MAT A- IS:\n")
for (i=0i<=3i++)
{ for (j=0j<=3j++)
printf("%13.7e ",a[i][j])
printf("\n")
}
printf("\n")
printf("MAT AA- IS:\n")
brmul(b,a,4,4,4,c)
for (i=0i<=3i++)
{ for (j=0j<=3j++)
printf("%13.7e ",c[i][j])
printf("\n")
}
}
}
这个行么?不知道是不是你要的,希望对你有用
与 全部线性组合构成的向量集合称为“张成的空间” (span)
线性无关:对于a和b取所有值都有
基的严格定义:向量空间的一组基是张成该空间的一个线性无关的向量集
线性变换是 *** 纵空间的一种手段,它保持网格线平行且等距分布,并且保持原点不动。这种变换可以用把变换后的基做为列向量所构成的矩阵来表示。
将矩阵相乘看作是对空间进行复合线性变换,即两个变换相继作用 。
秩代表变换后空间的维数
矩阵的列张成的空间就是列空间,秩是列空间的维数
列空间让我们清楚什么时候解存在,零空间有助于我们理解所有可能的解的集合是什么样的
变换后落在原点的向量的集合被称为矩阵的“零空间”或“核”
点积: 投影
点积的投影可以看成一种线性变换
叉积:
基坐标的转换
M代表我所见变换,外侧两个矩阵代表着转移作用,也就是视角上的转换。矩阵乘积仍然代表着同一个变换,只不过是从其他人的角度来看的。
特征值与特征向量
对角矩阵的解读:所有基向量都是特征向量,矩阵的对角元是它们所属的特征值
之所以把矩阵变换为对角矩阵,是因为在该矩阵的特征基上,只进行尺度变换,可以减少运算量。
行列式告诉你的是一个变换对面积的缩放比例,特征向量则是在变换中留在它所张成的空间中的向量。
线性变换:
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)