如何用MATLAB编辑一个录音机程序

如何用MATLAB编辑一个录音机程序,第1张

如果是想将声音信号录制到matlab里面,则可以使用以下的函数。 R = audiorecorder( 44100, 16 ,2 ) ; %创建一个保存音频信息的对象,它包含采样率,时间和录制的音频信息等等。44100表示采样为44100Hz(可改为8000, 11025, 22050等

你这里有两个程序,第二个程序与第一个实质上是一样的,区别就是信号与导向矢量的写法有点不同,这里我就不注释了。还有,我下面附了一段我自己的写的程序,里面有SIM算法。G-S正交化算法等。是基于圆阵形式的,你的算法是基于线阵的,他们程序上的区别在于导向矢量的不同。我的算法是某项目中的,保证好使。建议学习波束形成技术,注意把程序分块,例如分成,求导向矢量;最优权值;形成波束等等。

程序如下:

4单元均匀线阵自适应波束形成图

clear

clc

format long

v=1

M=4

N=1000%%%%%%%快拍数

f0=21*10^3%%%%%%%%%%%信号与干扰的频率

f1=11*10^3

f2=15*10^3

omiga0=2*pi*f0%%%%%%%信号与干扰的角频率

omiga1=2*pi*f1

omiga2=2*pi*f2

sita0=08%信号方向

sita1=04%干扰方向1

sita2=21%干扰方向2

for t=1:N %%%%%%%%%%%%信号

adt(t)=sin(omiga0*t/(N*f0))

a1t(t)=sin(omiga1*t/(N*f1))

a2t(t)=sin(omiga2*t/(N*f2))

end

for i=1:M%%%%%%%%%%%%信号的导向矢量:线阵的形式

ad(i,1)=exp(j*(i-1)*pi*sin(sita0))

a1(i,1)=exp(j*(i-1)*pi*sin(sita1))

a2(i,1)=exp(j*(i-1)*pi*sin(sita2))

end

R=zeros(M,M)

for t=1:N

x=adt(t)*ad+a1t(t)*a1+a2t(t)*a2%阵列对信号的完整响应

R=R+x*x'%信号的协方差矩阵

end

R=R/N%%%%%%%%%协方差矩阵,所有快拍数的平均

miu=1/(ad'*inv(R)*ad)%%%%%%这个貌似是LMS算法的公式,具体我记不太清,这里是求最优权值,根据这个公式求出,然后加权

w=miu*inv(R)*ad

%%%%%%形成波束%%%%%%%%%%%%%%%%%%%

for sita=0:pi/100:pi

for i=1:M

x_(i,1)=exp(j*(i-1)*pi*sin(sita))

end

y(1,v)=w'*x_%%%%%%%对信号进行加权,消除干扰

v=v+1

end

y_max=max(y(:))%%%%%%%%%%%%%%%归一化

y_1=y/y_max

y_db=20*log(y_1)

sita=0:pi/100:pi

plot(sita,y)

Xlabel(‘sitaa’)

Ylabel(‘天线增益db’)

4单元均匀线阵自适应波束形成

目标

clear

clc

format long

v=1

M=4阵元数

N=100

f0=21*10^3

omiga0=2*pi*f0

sita0=06%信号方向

for t=1:N

adt(t)=sin(omiga0*t/(N*f0))

end

for i=1:M

ad(i,1)=exp(j*(i-1)*pi*sin(sita0))

end

R=zeros(4,4)

r=zeros(4,1)

for t=1:N

x=adt(t)*ad

R=R+x*x'

end

R=R/N

miu=1/(ad'*inv(R)*ad)

w=miu*inv(R)*ad

for sita=0:pi/100:pi/2

for i=1:M

a(i,1)=exp(j*(i-1)*pi*sin(sita))

end

y(1,v)=w'*a

v=v+1

end

sita=0:pi/100:pi/2

plot(sita,y)

xlabel('sita')

ylabel('天线增益’)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%我的程序%%%%%%%%%%%%%%%

function jieshousignal

%期望信号数:1个

%干扰信号数:4个

%信噪比已知

%干燥比已知

%方位角已知

clc

clear all

close all

%//参数设置===========================================

1=0

2=0

3=0

% for rrr=1:16000

signal_num=1 %signal number

noise_num=5 %interference number

R0=06 %圆的半径

SP=2000 %Sample number

N=8 %阵元数

snr=-10%Signal-to-Noise

sir1=10 %Signal-to-Interference one

sir2=10 %Signal-to-Interference two

sir3=10 %Signal-to-Interf

sir4=10

sir5=10

%//================noise Power-to-signal Power====================

factor_noise_1=10^(-sir1/10)

factor_noise_2=10^(-sir2/10)

factor_noise_3=10^(-sir3/10)

factor_noise_4=10^(-sir4/10)

factor_noise_5=10^(-sir5/10)

factor_noise_targe=10^(-snr/10)

% //======================== ===============

d1=85*pi/180%%干扰1的方位角

d2=100*pi/180%干扰2的方位角

d3=147*pi/180%干扰3的方位角

d4=200*pi/180%干扰4的方位角

d5=250*pi/180%干扰5的方位角

d6=150*pi/180%目标的方位角

e1=15*pi/180%%干扰1的俯仰角

e2=25*pi/180%干扰2的俯仰角

e3=85*pi/180%干扰3的俯仰角

e4=50*pi/180%干扰4的俯仰角

e5=70*pi/180%干扰5的俯仰角

e6=85*pi/180%目标的俯仰角

% //====================目标信号==========================

t=1:1:SP

fc=2e7

Ts=1/(3e10)

S0=5*cos(2*pi*fc*t*Ts)%目标信号

for kk=1:N

phi_n(kk)=2*pi*(kk-1)/N

end

%//==================== *** 纵矢量==========================================

A=[conj(exp(j*2*pi*R0*cos(d6-phi_n)*sin(e6)))conj(exp(j*2*pi*R0*cos(d1-phi_n)*sin(e1)))conj(exp(j*2*pi*R0*cos(d2-phi_n)*sin(e2)))conj(exp(j*2*pi*R0*cos(d3-phi_n)*sin(e3)))conj(exp(j*2*pi*R0*cos(d4-phi_n)*sin(e4)))conj(exp(j*2*pi*R0*cos(d5-phi_n)*sin(e5)))]'

A1=[conj(exp(j*2*pi*R0*cos(d1-phi_n)*sin(e1)))conj(exp(j*2*pi*R0*cos(d2-phi_n)*sin(e2)))conj(exp(j*2*pi*R0*cos(d3-phi_n)*sin(e3)))conj(exp(j*2*pi*R0*cos(d4-phi_n)*sin(e4)))conj(exp(j*2*pi*R0*cos(d5-phi_n)*sin(e5)))]'

% //==========================================================Power of the interference

% // depending on the signal power and SIR

Ps1=0

Ps2=0

Ps3=0

Ps4=0

Ps5=0

S1=zeros(1,SP)

S2=zeros(1,SP)

S3=zeros(1,SP)

S4=zeros(1,SP)

S5=zeros(1,SP)

Ps0=S0*S0'/SP % signal power

Ps1=Ps0*factor_noise_1

Ps2=Ps0*factor_noise_2

Ps3=Ps0*factor_noise_3

Ps4=Ps0*factor_noise_4

Ps5=Ps0*factor_noise_5

% //==========================干扰信号的随机包络=========================

S1=normrnd(0,sqrt(Ps1/2),1,SP)+j*normrnd(0,sqrt(Ps1/2),1,SP)

S2=normrnd(0,sqrt(Ps2/2),1,SP)+j*normrnd(0,sqrt(Ps2/2),1,SP)

S3=normrnd(0,sqrt(Ps3/2),1,SP)+j*normrnd(0,sqrt(Ps3/2),1,SP)

S4=normrnd(0,sqrt(Ps4/2),1,SP)+j*normrnd(0,sqrt(Ps4/2),1,SP)

S5=normrnd(0,sqrt(Ps5/2),1,SP)+j*normrnd(0,sqrt(Ps5/2),1,SP)

%//

S=[S0S1S2S3S4S5]

SS1=[S1S2S3S4S5]

X=A*S%信号加干扰

XX2=A1*SS1%接收到的干扰

Pw_noise=sqrt(Ps0*factor_noise_targe/2)

a1=randn(N,SP)

a2=randn(N,SP)

a1=a1/norm(a1)

a2=a2/norm(a2)

W=Pw_noise*(a1+sqrt(-1)*a2)

X=X+W

% //--------------------------SMI算法----------------------------------------

Rd=X*S0'/SP

R=X*X'/(SP*1)

Wc_SMI=pinv(R)*Rd/(Rd'*pinv(R)*Rd)%权向量

Wc_SMI=Wc_SMI/norm(Wc_SMI)

Y_SMI=Wc_SMI'*X %SMI算法恢复出来的信号

%//-------------------------------------GS算法------------------

m=1

for i=1:400:2000

X2(:,m)=XX2(:,i)

m=m+1

end

a=zeros(1,8)

phi_n=zeros(1,8)

phi=0:pi/180:2*pi

theta=0:pi/180:pi/2

for kk=1:8

a(kk)=1

phi_n(kk)=2*pi*(kk-1)/8

end

x1=zeros(1,8)

x2=zeros(1,8)

x3=zeros(1,8)

x4=zeros(1,8)

x5=zeros(1,8)

x1=X2(:,1)'

x2=X2(:,2)'

x3=X2(:,3)'

x4=X2(:,4)'

x5=X2(:,5)'

Z1=x1

Z1_inner_product=Z1*conj(Z1)

Z1_mode=sqrt(sum(Z1_inner_product))

Y1=Z1/Z1_mode

Inner_product=sum(x2*conj(Y1))

Z2=x2-Inner_product*Y1

Z2_inner_product=sum(Z2*conj(Z2))

Z2_mode=sqrt(Z2_inner_product)

Y2=Z2/Z2_mode

Inner_product1=sum(x3*conj(Y1))

Inner_product2=sum(x3*conj(Y2))

Z3=x3-Inner_product1*Y1-Inner_product2*Y2

Z3_inner_product=sum(Z3*conj(Z3))

Z3_mode=sqrt(Z3_inner_product)

Y3=Z3/Z3_mode

Inner_product1_0=sum(x4*conj(Y1))

Inner_product2_0=sum(x4*conj(Y2))

Inner_product3_0=sum(x4*conj(Y3))

Z4=x4-Inner_product1_0*Y1-Inner_product2_0*Y2-Inner_product3_0*Y3

Z4_inner_product=sum(Z4*conj(Z4))

Z4_mode=sqrt(Z4_inner_product)

Y4=Z4/Z4_mode

Inner_product1_1=sum(x5*conj(Y1))

Inner_product2_1=sum(x5*conj(Y2))

Inner_product3_1=sum(x5*conj(Y3))

Inner_product4_1=sum(x5*conj(Y4))

Z5=x5-Inner_product1_1*Y1-Inner_product2_1*Y2-Inner_product3_1*Y3-Inner_product4_1*Y4

Z5_inner_product=sum(Z5*conj(Z5))

Z5_mode=sqrt(Z5_inner_product)

Y5=Z5/Z5_mode

%Y1

%Y2

%Y3

%Y4

%Y5

w0=zeros(1,8)

w=zeros(1,8)

for mm=1:8

w0(mm)=exp(-j*2*pi*R0*cos(d6-phi_n(mm))*sin(e6))

end

dd1=sum(w0*conj(Y1))*Y1

dd2=sum(w0*conj(Y2))*Y2

dd3=sum(w0*conj(Y3))*Y3

dd4=sum(w0*conj(Y4))*Y4

dd5=sum(w0*conj(Y5))*Y5

w=w0-dd1-dd2-dd3-dd4-dd5

Wc_GS=w

Wc_GS=Wc_GS/(norm(Wc_GS))

Y_GS=Wc_GS*X %GS算法恢复出来的图像

%//----------------------------------MMSE算法-----------------------

Rd=X*S0'/SP

R=X*X'/(SP*1)

Wc_MMSE=pinv(R)*Rd

Wc_MMSE=Wc_MMSE/norm(Wc_MMSE)

Y_MMSE=Wc_MMSE'*X %MMSE算法恢复出来的信号

S0=S0/norm(S0)

Y_GS=Y_GS/norm(Y_GS)

Y_SMI=Y_SMI/norm(Y_SMI)

Y_MMSE=Y_MMSE/norm(Y_MMSE)

% figure(1)

% plot(real(S0))

% title('原始信号')

% xlabel('采样快拍数')

% ylabel('信号幅度')

% figure(2)

% plot(real(Y_SMI))

% title('运用SMI算法处理出的信号')

% xlabel('采样快拍数')

% ylabel('信号幅度')

% figure(3)

% plot(real(Y_GS))

% title('运用G-S算法处理出的信号')

% xlabel('采样快拍数')

% ylabel('信号幅度')

% figure(4)

% plot(real(Y_MMSE))

% for i=1:SP

% ss(i)=abs(S0(i)-Y_SMI(i))^2

% end

% q_1=mean(ss)

% for i=1:SP

% ss1(i)=abs(S0(i)-Y_GS(i))^2

% end

% q_2=mean(ss1)

% for i=1:SP

% ss2(i)=abs(S0(i)-Y_MMSE(i))^2

% end

% q_3=mean(ss2)

%

% 1=1+q_1

% 2=2+q_2

% 3=3+q_3

% end

% 1/16000

% 2/16000

% 3/16000

phi=0:pi/180:2*pi

theta=0:pi/180:pi/2

%

% % //------------------------ 形成波束-----------------------------------------

F_mmse=zeros(91,361)

F_smi=zeros(91,361)

F_gs=zeros(91,361)

for mm=1:91

for nn=1:361

p1=sin(theta(mm))

p2=cos(phi(nn))

p3=sin(phi(nn))

q1=sin(e6)

q2=cos(d6)

q3=sin(d6)

for hh=1:8

w1=cos(phi_n(hh))

w2=sin(phi_n(hh))

zz1=q2*w1+q3*w2

zz2=p2*w1+p3*w2

zz=zz2*p1-zz1*q1

F_mmse(mm,nn)= F_mmse(mm,nn)+conj(Wc_MMSE(hh))*(exp(j*2*pi*R0*(zz2*p1)))

F_smi(mm,nn)=F_smi(mm,nn)+conj(Wc_SMI(hh))*(exp(j*2*pi*R0*(zz2*p1)))

F_gs(mm,nn)=F_gs(mm,nn)+conj((Wc_GS(hh))')*(exp(j*2*pi*R0*(zz2*p1)))

end

end

end

F_MMSE=abs(F_mmse)

F_SMI=abs(F_smi)

F_GS=abs(F_gs)

figure(5)

mesh(20*log10(F_MMSE))

figure(6)

mesh(20*log10(F_SMI))

title('SMI算法波束形成图')

xlabel('方位角')

ylabel('俯仰角')

zlabel('幅度/dB')

figure(7)

mesh(20*log10(F_GS))

title('G-S算法波束形成图')

xlabel('方位角')

ylabel('俯仰角')

zlabel('幅度/dB')


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/11523602.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-16
下一篇 2023-05-16

发表评论

登录后才能评论

评论列表(0条)

保存