line=raw_input('please input: ')
print line
n=len(line)
n1=0
n2=0
n3=0
for ch in line:
if ch in '0123456789':
n1+=1
if ch in 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz':
n2+=1
if ch==' ':
n3+=1
n4=n-n1-n2-n3
print n2,n3,n1,n4
################################
import string
str1=raw_input('please a english sentence: ')
str2=string.upper(str1)
print str2
##################################
s=0
for n in range(1,1001):
s=s+1.0/(4*n-3)-1.0/(4*n-1)
print 4*s
我们这次的任务是利用Python来模拟抛硬币的情况,并且记录正面朝上占所有试验中的比率,大家是不是想起了课堂中提到过的蒲丰,皮尔逊等人做的试验?当然,我们现在已经不再需要再去扔几千次,几万次硬币了;Python为我们提供了一个相当便捷的解决方案。Python 的randint(0,1)函数可以等概率,随机地返回0与1两个数,我们可以将返回的数值0记为硬币的反面,1记为硬币的正面,所以问题就转换成了:统计大量重复试验中,结果为1占总试验次数的比例。
简单地画一个流程图,希望有助于大家理解。
*流程图是网上使用ProcessOn画的,一个免费的在线流程图绘制平台,简单容易上手,强烈安利给大家~
废话不多说,上图:
可以看见,随着硬币投掷次数的增加,正面朝上的几率逐渐稳定在0.5,这就是我们在课堂上讲过的内容:在重复试验中,我们可以使用频率的稳定值作为事件发生的概率。
怎么样,是不是学到了一招?
在这个程序的基础上,我相信大家有能力进行进一步地延伸与发散。
大家可以尝试着去完成这样三个问题:
1,比较一下当投掷次数为100次,1000次与10000次的图像差别(提示:为了使区别更加显著,大家可以尝试将X轴使用对数坐标表示)
好的,就先写到这里,感觉有意思的话点个赞再走呗~
# -*- coding: UTF-8 -*-#1.编写程序,输入3个数,计算a,b,c的和并输出。
a = input("请输入a")
b = input("请输入b")
c = input("请输入c")
sum = float(a)+float(b)+float(c)
print("a+b+c=", sum)
#2. 编写程序,输入三角形的两条直角边(实数),计算斜边长度并输出,保留2位小数。
A = float(input("请输入三角形直角边A"))
B = float(input("请输入三角形直角边B"))
C = (pow(A, 2)+pow(B, 2))**0.5
print("斜边C=", C)
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)