声纳的使用原理

声纳的使用原理,第1张

正如你所说水下声纳 就是一个超声波发生与接收器

其探测机理同雷达是完全一样的

只不过电磁波在水下不能传送 故用超声波代替

所以说 雷达碰到水中的固体物质(包括大鱼)就会反射

声纳接受的反射后的超声波后

理由简单程序就可以转化为可视的效果 测距以及估测物体大小与速度

测定海水深度是 不断得向海底发射超声波 超声波被海床反d后再被接受 这样 就可以得到一个海底深度连续的数据

因为 海底也有平原 高山 沟壑 所以所谓的海底深度 应该是一个区域的平均值 而不是单纯某个位置的具体值

1941年12月,太平洋战争爆发。美国人的潜艇仿佛长了眼睛似的,穿过了日本人设置的层层水雷封锁线,神不知鬼不觉地钻进日本海,向日本舰船发起突然袭击,使日本海军损失惨重;与此同时,日本的潜艇一钻进美国的军港或海岸边,不知怎的,就遭到美国军舰或飞机的攻击。

“这是怎么回事呢?”日本海军官员百思不得其解,“难道美国人使用了什么秘密武器?”的确,美国人使用了一种“秘密武器”——声纳。

声纳是一种利用声波在水下测定目标距离和运动速度的仪器。美国人在潜艇上装了类似声纳的“探雷器”,因此对于日本人设置的水雷封锁线及舰船的所在位置一目了然;美国人还在军港和海岸的航道口装上了声纳,这样,海里的任何动静都逃不过美国人的“耳目”。

声纳诞生于第二次世界大战。它的发明,凝聚着几代科学家的心血。早在1490年,意大利著名美术家、科学家达·芬奇就注意到了声音在水中的传播。有一次,他来到海边写生。完成一幅画后,好奇的达·芬奇忽然产生了一个念头:水里面到底有没有什么声音?于是,他取来一根管子,将管子的一端插到水里,管子的另一端放在耳朵旁。结果听到了“咕噜咕噜”的声音。经过仔细的辨认,他发现这是远方的船航行时螺旋桨击水放出的声响。达·芬奇的这根管子可以算是声纳最古老的祖先了。

3个多世纪后,瑞士物理学家柯拉顿和德国数学家斯特模,对声音在水中的传播进行了深入的探讨。在这以后,许多科学家也进行这方面的研究。经过反复实验,他们比较精确地测出声音在水中的传播速度为5500公里每小时,比在空气中的传播快4倍。此外,科学家们还发现,声音在水中传播,遇到海洋中的物体或海底时,声音会被反射回来,此时也被“吞掉”一些声波。不同频率的声波,在水中被吸收和反射的程度也不相同。超声波能量集中,可朝一个方向传播,反射回来的声波比较强烈。

这个时期,正值潜水艇在海里称王称霸的时期。人们对于潜水艇的神出鬼没正感到束手无策。自然而然地,科学家们想到:利用超声波在水中的传播特性,不就可以测出潜艇所在的方位、距离了吗?

可是,要实现超声波在水中的发射和接收谈何容易!一时研制潜水艇“克星”的工作搁浅了!1880年,英国科学家彼埃尔、居里等成功地制造出换能器,实现了电、声信号的转换。这样,通过换能器,可将电波变成声波,并向海里发射;声波遇到物体后,又反射回来,换能器接收到声波,并把它变成电波,显示出来。根据超声波发出到接收所需的时间,就可以测出发射地点与物体之间的距离。

就这样,世界上第一代声纳诞生了。后来,科学家在第一代声纳的基础上,做了许多改进,发明了“主动式声纳”和“被动式声纳”两大类。

主动式声纳,主动发出声信号,去寻找水下目标,根据声波的反射情况做出判断;被动式声纳,收听水中目标发出的噪音,从而测出目标所在的方位、距离。然而,这两类声纳在使用过程中,也暴露出一些缺陷:主动式声纳发出的声波容易被水中的潜水艇发现;被动式声纳对于不发声的目标无能为力。

科学家们决心对声纳做进一步的改进。他们从海脉的身上得到了启迪。 本世纪60年代,生物学家诺里斯发现,用橡皮蒙住海脉双眼,丝毫不影响它的活动;可把海脉前额蒙住,它在水下就像瞎子一样,到处乱撞。显然,海脉是用前额发出声波来行动的。

经过进一步研究,科学家发现海脉有两架“声波发射机”:当它“观察”远距离目标时,它就发射低声,以实现远距离传播;当它“观察”近距离目标时,它就改发超声,以提高分辨率。它也有两架“声波接收机”。海脉的声纳竟是如此先进,如此完美!科学家“虚心”向海脉学习,以海脉的声纳为发明的奋斗目标。

不久,美国科学家发明了军用高级声纳。它是一种多波束回声探测仪,采用两套相同的水听器发射阵。它的性能要比先前的声纳出色得多。

科学家还从海琢声纳外的特制导流罩抗水流噪音的性能,得到启发,研制出“声纳导流罩”。有了它,军舰可不必像以前那样需要静止下来时才使用声纳,即使在高速前进,也可以便用声纳,而不受自身噪音的干扰。

海豚 ,领着科学家走上声纳发明的最高境界。

声纳的工作原理是:一种利用声音进行侦察的工具。

一、声纳由发射机、换能器、接收机、显示器、定时器、控制器等主要部件构成。发射机制造电信号,经过换能器(一般用压电晶体),把电信号变成声音信号向水中发射。

二、声信号在水中传递时,如果遇到潜艇、水雷、鱼群等目标,就会被反射回来,反射回的声波被换能器接收,又变成电信号,经放大处理,在荧光屏上显示或在耳机中变成声音。根据信号往返时间可以确定目标的距离,根据声调的高低等情况可以判断目标的性质。

三、目标是潜艇,潜艇是钢质外壳,回声不仅清晰,而且还有拖长的回鸣;鱼群的回声则低沉而混乱。目标如果是运动的,那么由于“多普勒效应”,回声的音调应有所变化:音调不断变高,说明目标正向他们靠拢;音调不断变低,说明目标离我们远去了。

扩展资料:

影响声纳工作性能的因素:

一、除声纳本身的技术状况外,外界条件的影响很严重。比较直接的因素有传播衰减、多路径效应、混响干扰、海洋噪声、自噪声、目标反射特征或辐射噪声强度等,它们大多与海洋环境因素有关。

二、声波在传播途中受海水介质不均匀分布和海面、海底的影响和制约,会产生折射、散射、反射和干涉,会产生声线弯曲、信号起伏和畸变,造成传播途径的改变,以及出现声阴区,严重影响声纳的作用距离和测量精度。

三、现代声纳根据海区声速--深度变化形成的传播条件,可适当选择基阵工作深度和俯仰角,利用声波的不同传播途径(直达声、海底反射声、会聚区、深海声道)来克服水声传播条件的不利影响,提高声纳探测距离。

四、运载平台的自噪声主要与航速有关,航速越大自噪声越大,声纳作用距离就越近,反之则越远;目标反射本领越大,被对方主动声纳发现的距离就越远;目标辐射噪声强度越大,被对方被动声纳发现的距离就越远。

参考资料来源:百度百科-声纳


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/11548314.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-16
下一篇 2023-05-16

发表评论

登录后才能评论

评论列表(0条)

保存