#include <stdio.h>
//汉诺塔x层塔从A塔整体搬到C塔,中间临时B塔。
//x层塔是从大到小往上叠放。每次移动只能移动一层塔。并且在移动过程中必须保证小层在上边
//借助B塔可以将x层塔全部从A搬到C上,并且符合要求(在移动过程中大的那块在下边,小的那块在上边)
int main()
{
void tower(int x,char a,char b,char c) //声明函数
int x=5,a='A',b='B',c='C' //x表示有5层塔,具体要多少层自己修改这个值。abc分别表示ABC塔。
tower(x,a,b,c) //x层塔从a移动到c的全过程,主程序只有这条有效语句
return 0
}
//以下是tower函数的定义
//参数解析:x层塔放在a上,b是中间塔,c是目标塔。即x层塔要从a搬到c上。
//此函数实现x层塔从a整体转移到c上。以及这个过程是怎么搬的全部过程。
void tower(int x,char a,char b,char c)
{
if(x==1)printf("将%d从%c放到%c\n",x,a,c) //只有1层塔时,直接从a搬到c上。
else //不止1层塔,则先将x-1层塔从a按照规律搬到b上,再将最后一块从a搬到c上,最后再将b上的x-1层塔按照规律搬到c上。
{
tower(x-1,a,c,b) //先将x-1层塔从a按照规律搬到b上,注意参数b放在最后,因为放在最后的参数是准备搬过去的目标塔。
printf("将%d从%c放到%c\n",x,a,c) //将最后一块从a搬到c上
tower(x-1,b,a,c) //最后再将b上的x-1层塔按照规律搬到c上,注意参数b放在开头,因为x-1层是要从b上搬过去的。
}
}
#include\x0d\x0a void move(char x,char y)\x0d\x0a {\x0d\x0a printf("%c-->%c\n",x,y)\x0d\x0a }\x0d\x0a void hanoi(int n,char one ,char two,char three)\x0d\x0a {\x0d\x0a if(n==1) move(one,three)\x0d\x0a else\x0d\x0a {\x0d\x0a hanoi(n-1,one,three,two)\x0d\x0a move(one,three)\x0d\x0a hanoi(n-1,two,one,three)\x0d\x0a }\x0d\x0a }\x0d\x0a main()\x0d\x0a {\x0d\x0a int m\x0d\x0a printf("input the number of disks:")\x0d\x0a scanf("%d",&m)\x0d\x0a printf("the step to moving %3d diskes:\n",m)\x0d\x0a hanoi(m,'A','B','C')\x0d\x0a }\x0d\x0a算法介绍:\x0d\x0a 其实算法非常简单,当盘子的个数为n时,移动的次数应等于2^n _ 1(有兴趣的可以自己证明试试看)。后来一位美国学者发现一种出人意料的简单方法,只要轮流进行两步 *** 作就可以了。首先把三根柱子按顺序排成品字型,把所有的圆盘按从大到小的顺序放在柱子A上,根据圆盘的数量确定柱子的排放顺序:若n为偶数,按顺时针方向依次摆放 A B C;\x0d\x0a 若n为奇数,按顺时针方向依次摆放 A C B。\x0d\x0a (1)按顺时针方向把圆盘1从现在的柱子移动到下一根柱子,即当n为偶数时,若圆盘1在柱子A,则把它移动到B;若圆盘1在柱子B,则把它移动到C;若圆盘1在柱子C,则把它移动到A。\x0d\x0a (2)接着,把另外两根柱子上可以移动的圆盘移动到新的柱子上。即把非空柱子上的圆盘移动到空柱子上,当两根柱子都非空时,移动较小的圆盘。这一步没有明确规定移动哪个圆盘,你可能以为会有多种可能性,其实不然,可实施的行动是唯一的。\x0d\x0a (3)反复进行(1)(2) *** 作,最后就能按规定完成汉诺塔的移动。\x0d\x0a 所以结果非常简单,就是按照移动规则向一个方向移动金片:\x0d\x0a 如3阶汉诺塔的移动:A→C,A→B,C→B,A→C,B→A,B→C,A→C\x0d\x0a 汉诺塔问题也是程序设计中的经典递归问题,下面我们将给出递归和非递归的不同实现源代码。欢迎分享,转载请注明来源:内存溢出
评论列表(0条)