1)有些人在CPU下可以正常运行,多GPU就不行,有的是单GPU可以,多GPU不行。所以怀疑是Keras多GPU设置的问题,但是程序在CPU和单GPU下仍然会出现segmentation fault的问题。
2)有时候,cudnn的版本问题也会导致segmentation fault的问题。我尝试了几个版本的cudnn,发现问题依旧存在。
3)怀疑是数据本身的问题,导致访问内存出错,尝试了Brats2018和Brats2017,结果都一样。
4)调试程序,用print语句找错误位置,程序运行到Epoch 1/500结束,始终没有找到相应的打印语句。最后找到
model.fit_generator(generator=training_generator,
steps_per_epoch=steps_per_epoch,
epochs=n_epochs,
validation_data=validation_generator,
validation_steps=validation_steps,
callbacks=get_callbacks(model_file,
initial_learning_rate=initial_learning_rate,
learning_rate_drop=learning_rate_drop,
learning_rate_epochs=learning_rate_epochs,
learning_rate_patience=learning_rate_patience,
early_stopping_patience=early_stopping_patience) )
找到fit_generator()函数的定义,发现参数位置是不对的callbacks在前面
应该是:
model.fit_generator(generator=training_generator,
steps_per_epoch=steps_per_epoch,
epochs=n_epochs,
callbacks=get_callbacks(model_file,
initial_learning_rate=initial_learning_rate,
learning_rate_drop=learning_rate_drop,
learning_rate_epochs=learning_rate_epochs,
learning_rate_patience=learning_rate_patience,
early_stopping_patience=early_stopping_patience),
validation_data=validation_generator,
validation_steps=validation_steps,
use_multiprocessing = True )
程序可以正常运行一个epoch,不会出现segmentation fault的问题。
但是程序还是未能正常运行。最后发现是Keras版本的问题,我的版本是2.2.4,降级到2.1.2就可以了。
data.py:
#coding:utf-8"""
Author:wepon
Source:https://github.com/wepe
"""
import os
from PIL import Image
import numpy as np
#读取文件夹mnist下的42000张图片,图片为灰度图,所以为1通道,图像大小28*28
#如果是将彩色图作为输入,则将1替换为3,并且data[i,:,:,:] = arr改为data[i,:,:,:] = [arr[:,:,0],arr[:,:,1],arr[:,:,2]]
def load_data():
data = np.empty((42000,1,28,28),dtype="float32")
label = np.empty((42000,),dtype="uint8")
imgs = os.listdir("./mnist")
num = len(imgs)
for i in range(num):
img = Image.open("./mnist/"+imgs[i])
arr = np.asarray(img,dtype="float32")
data[i,:,:,:] = arr
label[i] = int(imgs[i].split('.')[0])
return data,label
由于Keras系统升级,cnn.py代码调整如下:
#coding:utf-8'''
GPU run command:
THEANO_FLAGS=mode=FAST_RUN,device=gpu,floatX=float32 python cnn.py
CPU run command:
python cnn.py
'''
#导入各种用到的模块组件
from __future__ import absolute_import
from __future__ import print_function
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation, Flatten
from keras.layers.advanced_activations import PReLU
from keras.layers.convolutional import Convolution2D, MaxPooling2D
from keras.optimizers import SGD, Adadelta, Adagrad
from keras.utils import np_utils, generic_utils
from six.moves import range
from data import load_data
import random
#加载数据
data, label = load_data()
#打乱数据
index = [i for i in range(len(data))]
random.shuffle(index)
data = data[index]
label = label[index]
print(data.shape[0], ' samples')
#label为0~9共10个类别,keras要求格式为binary class matrices,转化一下,直接调用keras提供的这个函数
label = np_utils.to_categorical(label, 10)
###############
#开始建立CNN模型
###############
#生成一个model
model = Sequential()
#第一个卷积层,4个卷积核,每个卷积核大小5*5。1表示输入的图片的通道,灰度图为1通道。
#border_mode可以是valid或者full,具体看这里说明:http://deeplearning.net/software/theano/library/tensor/nnet/conv.html#theano.tensor.nnet.conv.conv2d
#激活函数用tanh
#你还可以在model.add(Activation('tanh'))后加上dropout的技巧: model.add(Dropout(0.5))
model.add(Convolution2D(4, 5, 5, border_mode='valid', input_shape=(1,28,28)))
model.add(Activation('tanh'))
#第二个卷积层,8个卷积核,每个卷积核大小3*3。4表示输入的特征图个数,等于上一层的卷积核个数
#激活函数用tanh
#采用maxpooling,poolsize为(2,2)
model.add(Convolution2D(8, 3, 3, border_mode='valid'))
model.add(Activation('tanh'))
model.add(MaxPooling2D(pool_size=(2, 2)))
#第三个卷积层,16个卷积核,每个卷积核大小3*3
#激活函数用tanh
#采用maxpooling,poolsize为(2,2)
model.add(Convolution2D(16, 3, 3, border_mode='valid'))
model.add(Activation('tanh'))
model.add(MaxPooling2D(pool_size=(2, 2)))
#全连接层,先将前一层输出的二维特征图flatten为一维的。
#Dense就是隐藏层。16就是上一层输出的特征图个数。4是根据每个卷积层计算出来的:(28-5+1)得到24,(24-3+1)/2得到11,(11-3+1)/2得到4
#全连接有128个神经元节点,初始化方式为normal
model.add(Flatten())
model.add(Dense(128, init='normal'))
model.add(Activation('tanh'))
#Softmax分类,输出是10类别
model.add(Dense(10, init='normal'))
model.add(Activation('softmax'))
#############
#开始训练模型
##############
#使用SGD + momentum
#model.compile里的参数loss就是损失函数(目标函数)
sgd = SGD(l2=0.0,lr=0.05, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy', optimizer=sgd,class_mode="categorical")
#调用fit方法,就是一个训练过程. 训练的epoch数设为10,batch_size为100.
#数据经过随机打乱shuffle=True。verbose=1,训练过程中输出的信息,0、1、2三种方式都可以,无关紧要。show_accuracy=True,训练时每一个epoch都输出accuracy。
#validation_split=0.2,将20%的数据作为验证集。
model.fit(data, label, batch_size=100, nb_epoch=10,shuffle=True,verbose=1,show_accuracy=True,validation_split=0.2)
"""
#使用data augmentation的方法
#一些参数和调用的方法,请看文档
datagen = ImageDataGenerator(
featurewise_center=True, # set input mean to 0 over the dataset
samplewise_center=False, # set each sample mean to 0
featurewise_std_normalization=True, # divide inputs by std of the dataset
samplewise_std_normalization=False, # divide each input by its std
zca_whitening=False, # apply ZCA whitening
rotation_range=20, # randomly rotate images in the range (degrees, 0 to 180)
width_shift_range=0.2, # randomly shift images horizontally (fraction of total width)
height_shift_range=0.2, # randomly shift images vertically (fraction of total height)
horizontal_flip=True, # randomly flip images
vertical_flip=False) # randomly flip images
# compute quantities required for featurewise normalization
# (std, mean, and principal components if ZCA whitening is applied)
datagen.fit(data)
for e in range(nb_epoch):
print('-'*40)
print('Epoch', e)
print('-'*40)
print("Training...")
# batch train with realtime data augmentation
progbar = generic_utils.Progbar(data.shape[0])
for X_batch, Y_batch in datagen.flow(data, label):
loss,accuracy = model.train(X_batch, Y_batch,accuracy=True)
progbar.add(X_batch.shape[0], values=[("train loss", loss),("accuracy:", accuracy)] )
"""
50。50个,FasterR-CNN是很多人进行目标检测领域学习的必经之路。本文将从实战的角度出发,对FasterR-CNN的结构、损失函数以及令人难以理解的anchor进行详细说明。本文将结合代码从以下几个部分进行解析。
代码是程序员用开发工具所支持的语言写出来的源文件,是一组由字符、符号或信号码元以离散形式表示信息的明确的规则体系。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)