>>edit svmtrain
>>edit svmclassify
>>edit svmpredict
function [svm_struct, svIndex] = svmtrain(training, groupnames, varargin)
%SVMTRAIN trains a support vector machine classifier
%
% SVMStruct = SVMTRAIN(TRAINING,GROUP) trains a support vector machine
% classifier using data TRAINING taken from two groups given by GROUP.
% SVMStruct contains information about the trained classifier that is
% used by SVMCLASSIFY for classification. GROUP is a column vector of
% values of the same length as TRAINING that defines two groups. Each
% element of GROUP specifies the group the corresponding row of TRAINING
% belongs to. GROUP can be a numeric vector, a string array, or a cell
% array of strings. SVMTRAIN treats NaNs or empty strings in GROUP as
% missing values and ignores the corresponding rows of TRAINING.
%
% SVMTRAIN(...,'KERNEL_FUNCTION',KFUN) allows you to specify the kernel
% function KFUN used to map the training data into kernel space. The
% default kernel function is the dot product. KFUN can be one of the
% following strings or a function handle:
%
% 'linear' Linear kernel or dot product
% 'quadratic' Quadratic kernel
% 'polynomial' Polynomial kernel (default order 3)
% 'rbf' Gaussian Radial Basis Function kernel
% 'mlp' Multilayer Perceptron kernel (default scale 1)
% function A kernel function specified using @,
% for example @KFUN, or an anonymous function
%
% A kernel function must be of the form
%
% function K = KFUN(U, V)
%
% The returned value, K, is a matrix of size M-by-N, where U and V have M
% and N rows respectively. If KFUN is parameterized, you can use
% anonymous functions to capture the problem-dependent parameters. For
% example, suppose that your kernel function is
%
% function k = kfun(u,v,p1,p2)
% k = tanh(p1*(u*v')+p2)
%
% You can set values for p1 and p2 and then use an anonymous function:
% @(u,v) kfun(u,v,p1,p2).
%
% SVMTRAIN(...,'POLYORDER',ORDER) allows you to specify the order of a
% polynomial kernel. The default order is 3.
%
% SVMTRAIN(...,'MLP_PARAMS',[P1 P2]) allows you to specify the
% parameters of the Multilayer Perceptron (mlp) kernel. The mlp kernel
% requires two parameters, P1 and P2, where K = tanh(P1*U*V' + P2) and P1
% >0 and P2 <0. Default values are P1 = 1 and P2 = -1.
%
% SVMTRAIN(...,'METHOD',METHOD) allows you to specify the method used
% to find the separating hyperplane. Options are
%
% 'QP' Use quadratic programming (requires the Optimization Toolbox)
% 'LS' Use least-squares method
%
% If you have the Optimization Toolbox, then the QP method is the default
% method. If not, the only available method is LS.
%
% SVMTRAIN(...,'QUADPROG_OPTS',OPTIONS) allows you to pass an OPTIONS
% structure created using OPTIMSET to the QUADPROG function when using
% the 'QP' method. See help optimset for more details.
%
% SVMTRAIN(...,'SHOWPLOT',true), when used with two-dimensional data,
% creates a plot of the grouped data and plots the separating line for
% the classifier.
%
% Example:
% % Load the data and select features for classification
% load fisheriris
% data = [meas(:,1), meas(:,2)]
% % Extract the Setosa class
% groups = ismember(species,'setosa')
% % Randomly select training and test sets
% [train, test] = crossvalind('holdOut',groups)
% cp = classperf(groups)
% % Use a linear support vector machine classifier
% svmStruct = svmtrain(data(train,:),groups(train),'showplot',true)
% classes = svmclassify(svmStruct,data(test,:),'showplot',true)
% % See how well the classifier performed
% classperf(cp,classes,test)
% cp.CorrectRate
%
% See also CLASSIFY, KNNCLASSIFY, QUADPROG, SVMCLASSIFY.
% Copyright 2004 The MathWorks, Inc.
% $Revision: 1.1.12.1 $ $Date: 2004/12/24 20:43:35 $
% References:
% [1] Kecman, V, Learning and Soft Computing,
% MIT Press, Cambridge, MA. 2001.
% [2] Suykens, J.A.K., Van Gestel, T., De Brabanter, J., De Moor, B.,
% Vandewalle, J., Least Squares Support Vector Machines,
% World Scientific, Singapore, 2002.
% [3] Scholkopf, B., Smola, A.J., Learning with Kernels,
% MIT Press, Cambridge, MA. 2002.
%
% SVMTRAIN(...,'KFUNARGS',ARGS) allows you to pass additional
% arguments to kernel functions.
% set defaults
plotflag = false
qp_opts = []
kfunargs = {}
setPoly = falseusePoly = false
setMLP = falseuseMLP = false
if ~isempty(which('quadprog'))
useQuadprog = true
else
useQuadprog = false
end
% set default kernel function
kfun = @linear_kernel
% check inputs
if nargin <2
error(nargchk(2,Inf,nargin))
end
numoptargs = nargin -2
optargs = varargin
% grp2idx sorts a numeric grouping var ascending, and a string grouping
% var by order of first occurrence
[g,groupString] = grp2idx(groupnames)
% check group is a vector -- though char input is special...
if ~isvector(groupnames) &&~ischar(groupnames)
error('Bioinfo:svmtrain:GroupNotVector',...
'Group must be a vector.')
end
% make sure that the data is correctly oriented.
if size(groupnames,1) == 1
groupnames = groupnames'
end
% make sure data is the right size
n = length(groupnames)
if size(training,1) ~= n
if size(training,2) == n
training = training'
else
error('Bioinfo:svmtrain:DataGroupSizeMismatch',...
'GROUP and TRAINING must have the same number of rows.')
end
end
% NaNs are treated as unknown classes and are removed from the training
% data
nans = find(isnan(g))
if length(nans) >0
training(nans,:) = []
g(nans) = []
end
ngroups = length(groupString)
if ngroups >2
error('Bioinfo:svmtrain:TooManyGroups',...
'SVMTRAIN only supports classification into two groups.\nGROUP contains %d different groups.',ngroups)
end
% convert to 1, -1.
g = 1 - (2* (g-1))
% handle optional arguments
if numoptargs >= 1
if rem(numoptargs,2)== 1
error('Bioinfo:svmtrain:IncorrectNumberOfArguments',...
'Incorrect number of arguments to %s.',mfilename)
end
okargs = {'kernel_function','method','showplot','kfunargs','quadprog_opts','polyorder','mlp_params'}
for j=1:2:numoptargs
pname = optargs{j}
pval = optargs{j+1}
k = strmatch(lower(pname), okargs)%#ok
if isempty(k)
error('Bioinfo:svmtrain:UnknownParameterName',...
'Unknown parameter name: %s.',pname)
elseif length(k)>1
error('Bioinfo:svmtrain:AmbiguousParameterName',...
'Ambiguous parameter name: %s.',pname)
else
switch(k)
case 1 % kernel_function
if ischar(pval)
okfuns = {'linear','quadratic',...
'radial','rbf','polynomial','mlp'}
funNum = strmatch(lower(pval), okfuns)%#ok
if isempty(funNum)
funNum = 0
end
switch funNum %maybe make this less strict in the future
case 1
kfun = @linear_kernel
case 2
kfun = @quadratic_kernel
case {3,4}
kfun = @rbf_kernel
case 5
kfun = @poly_kernel
usePoly = true
case 6
kfun = @mlp_kernel
useMLP = true
otherwise
error('Bioinfo:svmtrain:UnknownKernelFunction',...
'Unknown Kernel Function %s.',kfun)
end
elseif isa (pval, 'function_handle')
kfun = pval
else
error('Bioinfo:svmtrain:BadKernelFunction',...
'The kernel function input does not appear to be a function handle\nor valid function name.')
end
case 2 % method
if strncmpi(pval,'qp',2)
useQuadprog = true
if isempty(which('quadprog'))
warning('Bioinfo:svmtrain:NoOptim',...
'The Optimization Toolbox is required to use the quadratic programming method.')
useQuadprog = false
end
elseif strncmpi(pval,'ls',2)
useQuadprog = false
else
error('Bioinfo:svmtrain:UnknownMethod',...
'Unknown method option %s. Valid methods are ''QP'' and ''LS''',pval)
end
case 3 % display
if pval ~= 0
if size(training,2) == 2
plotflag = true
else
warning('Bioinfo:svmtrain:OnlyPlot2D',...
'The display option can only plot 2D training data.')
end
end
case 4 % kfunargs
if iscell(pval)
kfunargs = pval
else
kfunargs = {pval}
end
case 5 % quadprog_opts
if isstruct(pval)
qp_opts = pval
elseif iscell(pval)
qp_opts = optimset(pval{:})
else
error('Bioinfo:svmtrain:BadQuadprogOpts',...
'QUADPROG_OPTS must be an opts structure.')
end
case 6 % polyorder
if ~isscalar(pval) || ~isnumeric(pval)
error('Bioinfo:svmtrain:BadPolyOrder',...
'POLYORDER must be a scalar value.')
end
if pval ~=floor(pval) || pval <1
error('Bioinfo:svmtrain:PolyOrderNotInt',...
'The order of the polynomial kernel must be a positive integer.')
end
kfunargs = {pval}
setPoly = true
case 7 % mlpparams
if numel(pval)~=2
error('Bioinfo:svmtrain:BadMLPParams',...
'MLP_PARAMS must be a two element array.')
end
if ~isscalar(pval(1)) || ~isscalar(pval(2))
error('Bioinfo:svmtrain:MLPParamsNotScalar',...
'The parameters of the multi-layer perceptron kernel must be scalar.')
end
kfunargs = {pval(1),pval(2)}
setMLP = true
end
end
end
end
if setPoly &&~usePoly
warning('Bioinfo:svmtrain:PolyOrderNotPolyKernel',...
'You specified a polynomial order but not a polynomial kernel')
end
if setMLP &&~useMLP
warning('Bioinfo:svmtrain:MLPParamNotMLPKernel',...
'You specified MLP parameters but not an MLP kernel')
end
% plot the data if requested
if plotflag
[hAxis,hLines] = svmplotdata(training,g)
legend(hLines,cellstr(groupString))
end
% calculate kernel function
try
kx = feval(kfun,training,training,kfunargs{:})
% ensure function is symmetric
kx = (kx+kx')/2
catch
error('Bioinfo:svmtrain:UnknownKernelFunction',...
'Error calculating the kernel function:\n%s\n', lasterr)
end
% create Hessian
% add small constant eye to force stability
H =((g*g').*kx) + sqrt(eps(class(training)))*eye(n)
if useQuadprog
% The large scale solver cannot handle this type of problem, so turn it
% off.
qp_opts = optimset(qp_opts,'LargeScale','Off')
% X=QUADPROG(H,f,A,b,Aeq,beq,LB,UB,X0,opts)
alpha = quadprog(H,-ones(n,1),[],[],...
g',0,zeros(n,1),inf *ones(n,1),zeros(n,1),qp_opts)
% The support vectors are the non-zeros of alpha
svIndex = find(alpha >sqrt(eps))
sv = training(svIndex,:)
% calculate the parameters of the separating line from the support
% vectors.
alphaHat = g(svIndex).*alpha(svIndex)
% Calculate the bias by applying the indicator function to the support
% vector with largest alpha.
[maxAlpha,maxPos] = max(alpha)%#ok
bias = g(maxPos) - sum(alphaHat.*kx(svIndex,maxPos))
% an alternative method is to average the values over all support vectors
% bias = mean(g(sv)' - sum(alphaHat(:,ones(1,numSVs)).*kx(sv,sv)))
% An alternative way to calculate support vectors is to look for zeros of
% the Lagrangians (fifth output from QUADPROG).
%
% [alpha,fval,output,exitflag,t] = quadprog(H,-ones(n,1),[],[],...
% g',0,zeros(n,1),inf *ones(n,1),zeros(n,1),opts)
%
% sv = t.lower <sqrt(eps) &t.upper <sqrt(eps)
else % Least-Squares
% now build up compound matrix for solver
A = [0 g'g,H]
b = [0ones(size(g))]
x = A\b
% calculate the parameters of the separating line from the support
% vectors.
sv = training
bias = x(1)
alphaHat = g.*x(2:end)
end
svm_struct.SupportVectors = sv
svm_struct.Alpha = alphaHat
svm_struct.Bias = bias
svm_struct.KernelFunction = kfun
svm_struct.KernelFunctionArgs = kfunargs
svm_struct.GroupNames = groupnames
svm_struct.FigureHandles = []
if plotflag
hSV = svmplotsvs(hAxis,svm_struct)
svm_struct.FigureHandles = {hAxis,hLines,hSV}
end
1.算术运算(arithmetic)主要指加减乘除、幂和舍入等运算
2.说明
数组运算基于元素的运算,支持任意向量、矩阵和多维数组
矩阵运算遵循线性代数的规则
字符(.)区分矩阵运算和数组运算
数组运算和矩阵运算的加减法则相同,所以.+和.-是不必要的
运算数之一为标量时,乘法法则相同,所以.*是不必要的
运算数都为标量时,除法法则相同,所以./是不必要的
3.两种运算符
数组运算符汇总表
矩阵运算符汇总表
4.实例演示
%1_16
a=[1 23 4]
a+a %数组加法
a-a %数组减法
a.*a %数组乘法:对应元素乘积
a*a %矩阵乘法:线性代数
a./a %数组除法:对应元素相除
a/a %矩阵除法:得出单位矩阵对角线为1
a.^3 %数组幂:单个元素分别求幂
a^3 %矩阵幂:即a*a*a
a*a*a
a*5 %有标量作为计算数时,数组和矩阵乘法法则相同
a.*5 %因此可用矩阵乘法*替代数组乘法
a' %复共轭转置
a.' %转置:行数变列数
sin(a) %对a中每个元素求sin(调用函数大多执行数组运算)
[sin(1) sin(2)sin(3) sin(4)] %与上式相同
exp(a) %数组的指数运算:函数调用,同上述sin运算
expm(a) %矩阵的指数幂运算:函数后加m,matrix
(-1)^(1/2) %负数开方产生虚数单位
sqrt(-1) %同上
(5+2i)*(5-2i) %复数运算
1.介绍一些算术运算的常用函数
2.认识函数
加plus
减minus
乘times
除rpide
矩阵乘法mtimes
矩阵左除mlpide
求和sum
乘积prod
舍入round
向-inf舍入floor
向inf舍入ceil
向0舍入fix
模 *** 作mod
3.实例演示
%1_17
%freexyn
a=[1 23 4]
a+a %数组加法
plus(a,a) %数组加法(函数形式)
minus(a,a) %数组减法
times(a,a) %数组乘法:单个元素对应相乘
rpide(a,a)
mtimes(a,a) %矩阵乘法
mlpide(a,a) %矩阵除法
sum(a) %矩阵a求和:按列 *** 作
sum([1 2 3 4]) %行向量求和:所有元素加和
sum([1 2 3 4]') %转置为列向量:同为所有元素加和
prod(a) %数组a中元素求乘积:按列相乘;该函数若输入行、列向量则所有元素乘积
round(2.6) %舍入:就近舍入即四舍五入
floor(2.6) %向负无穷舍入
ceil(2.3) %向正无穷舍入
fix(2.6) %向0舍入
fix(-2.6)
mod(5,2) %余数(模 *** 作):被除数、除数
rem(5,2) %求余数(大多情况与mod相同)
mod(-5,2) %被除数为负数时,结果不一样
rem(-5,2)
1.逻辑型和逻辑运算
逻辑型(logical)数据是用数字1和0分别表示真(true)或假(false)的状态
2.认识函数
逻辑型logical
真true
假false
判断逻辑型islogical
全为真all
是否为真any
3.说明
Matlab中一些运算会返回逻辑值,表示一个条件是否被满足
可以使用这些逻辑值来索引数组或执行条件代码
逻辑运算符
逻辑真值表
4.实例演示
%1_18
a=[0 1 2 -1]
logical(a) %创建逻辑型:0为假返回逻辑0,其他非0数字都是真返回1
islogical(a)
islogical(b)
true &false %逻辑与
true | false %逻辑或
~true
1 &0
2 &0
~100
1 &&0 %短路的与:功能与“与”相同
1 || 0
% [1 0] &&[0 0] %短路的与、或只适用于标量运算
[1 0] &[0 0] %逻辑与可以用于数组
all([0 1 1]) %判断全为真
all([1 1 1])
any([0 1 1]) %判断任一为真,有一个真则结果为真,全为假结果为假
any([1 1 1])
any([0 0 0])
c=~a %a取非再赋值给c,则c为逻辑数组[1 0 0 0]
a(~mod(a,2)) %a中偶数余数取到0再取非则为真返回1,逻辑真被索引到返回相应偶数元素
true &[] %结果为空的逻辑数组,涉及到空矩阵的任何逻辑运算结果都是空逻辑数组
1.关系运算
关系运算(relational)使用“小于”,“大于”和“不等于”等运算符定量地比较运算数,比较的结果是一个逻辑数组,在关系为真的位置显示1
作者:freexyn 整理/注释:韩松岳
2.认识函数
查找元素find
3.关系运算符
关系运算符
4.实例演示
%1_19
a=[1 2 3]
a>1 %分别判断元素是否大于1,满足关系返回逻辑值1,否则0
a>a %返回0 0 0
a>=a %每个数都等于自己,返回三个1
[]>[] %关系运算中只要存在空矩阵,结果都返回空的逻辑数组
[]==[]
[]==2
%[]==[1 2 3] %报错,矩阵维度不一致无法比较(进行关系运算)
b=3+4i %复数关系运算
c=3+5i
c<=b %非等于关系的比较,只比较实部3
c==b %返回0。说明:复数关系运算中,==与~=会比较实部和虚部(上述例子中3和3、4和5),其他非等于关系的比较,只比较实部
a>1 &a<3 %将两个逻辑结果进行“与”运算,结果仍为逻辑值
tf=a>1 &a<3 %将上述结果赋值给变量tf
a(tf) %使用逻辑索引,提取矩阵中满足特定条件的元素
index=find(a>1 &a<3) %返回输入变量中条件为真的元素的线性索引
a(index) %使用线性索引,提取矩阵中满足特定条件的元素
a(a>1 &a<3)=10 %使用逻辑索引,修改满足特定条件的元素的值
1.Matlab中各类、多种运算符组合使用时的优先运算顺序
2.优先级顺序
可以任意组合使用算术运算符、关系运算符和逻辑运算符等形成的表达式进行运算,Matlab进行运算处理的顺序取决于每个运算符的优先级。在每个优先级中,运算符具有相同的优先级,并从左到右进行处理。Matlab运算符的优先级规则从最高到最低排序如下
括号 ()
转置 (.'), 幂(.^), 复共轭转置 ('), 矩阵的幂(^)
一元减的幂(.^-),一元加的幂(.^+),逻辑非的幂(.^~) 一元减的矩阵的幂(^-), 一元加的矩阵的幂(^+),逻辑非的矩阵的幂 (^~).
一元加(+),一元减(-),逻辑非(~)
乘法(.*),右除(./),左除(.),矩阵的乘法(*),矩阵的右除(/),矩阵的左除 ()
加法 (+), 减法(-)
冒号(:)
关系运算符(<),(), (>=), (==), (~=)
逻辑与(&)
逻辑或(|)
短路逻辑与(&&)
短路逻辑或 (||)
3.实例演示
%1_20
1>=1+1 %四则运算高于关系运算符
(1>=1)+1
1:2+3 %四则运算高于冒号运算符
(1:2)+3
1|1&0 %逻辑与高于逻辑或
(1|1)&0
1.基本运算中数组大小的兼容性(2016b)
2.说明
这里兼容性是指,两个大小不同的数组是否能够进行运算
两个完全相同大小的数组可以运算
其中之一是标量的两个大小不同的数组可以运算
一个是行向量,一个是列向量,可以运算
一个是矩阵,一个是具有相同行数的列向量,可以运算
一个是矩阵,一个是具有相同列数的行向量,可以运算
一个是矩阵,一个是具有相同行数和列数的三维数组,可以运算
这里的兼容性运算主要指数组的四则运算
3.实例演示
%1_21
a=[1 23 4]
b=[1 2]
c=[34]
a+a
a+2 %矩阵与标量运算:将标量扩展为前面矩阵的兼容性大小,再遵循数组四则运算
a.*2
a*2
b+c %先扩展为兼容性大小:b复制行、c复制列,再运算
a+b
a+c
a.*b
a.*c
% a*b %无法运算,不满足矩阵乘法
a*c %可以运算,但并非兼容性运算,而是满足矩阵乘法
d=cat(3,a,a) %参数3是在3维方向连接两个矩阵a和a
a+d %不同维度的数组也可兼容性运算
a.*d %可兼容性运算
bsxfun(@plus,a,d) %低版本兼容性运算函数:第一输入参数表示运算符,后面输入参数表示运算数
(第三章结束,后接第四章)
多层反馈RNN(Recurrent neural Network、循环神经网络)神经网络是一种节点定向连接成环的人工神经网络。这种网络的内部状态可以展示动态时序行为。不同于前馈神经网络的是,RNN可以利用它内部的记忆来处理任意时序的输入序列,这让它可以更容易处理如不分段的手写识别、语音识别等。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)