问题描述:
用RSA对下列数据实现加密和解密:
a. p=3,q=11,e=7M=5
b. p=7,q=11,e=3M=9
解析:
拜托:老大,你的家庭作业也来问?
你自己学吧:下面是课文^
RSA加密算法
该算法于1977年由美国麻省理工学院MIT(Massachusetts Institute of Technology)的Ronal Rivest,Adi Shamir和Len Adleman三位年轻教授提出,并以三人的姓氏Rivest,Shamir和Adlernan命名为RSA算法。该算法利用了数论领域的一个事实,那就是虽然把两个大质数相乘生成一个合数是件十分容易的事情,但要把一个合数分解为两个质数却十分困难。合数分解问题目前仍然是数学领域尚未解决的一大难题,至今没有任何高效的分解方法。与Diffie-Hellman算法相比,RSA算法具有明显的优越性,因为它无须收发双方同时参与加密过程,且非常适合于电子函件系统的加密。
RSA算法可以表述如下:
(1) 密钥配制。假设m是想要传送的报文,现任选两个很大的质数p与q,使得:
(12-1);
选择正整数e,使得e与(p-1)(q-1)互质;这里(p-1)(q-1)表示二者相乘。再利用辗转相除法,求得d,使得:
(12-2);
其中x mod y是整数求余运算,其结果是x整除以y后剩余的余数,如5 mod 3 = 2。
这样得:
(e,n),是用于加密的公共密钥,可以公开出去;以及
(d,n),是用于解密的专用钥匙,必须保密。
(2) 加密过程。使用(e,n)对明文m进行加密,算法为:
(12-3);
这里的c即是m加密后的密文。
(3) 解密过程。使用(d,n)对密文c进行解密,算法为:
(12-4);
求得的m即为对应于密文c的明文。
RSA算法实现起来十分简捷,据说英国的一位程序员只用了3行Perl程序便实现了加密和解密运算。
RSA算法建立在正整数求余运算基础之上,同时还保持了指数运算的性质,这一点我们不难证明。例如:
(12-5);
(12-6)。
RSA公共密钥加密算法的核心是欧拉(Euler)函数ψ。对于正整数n,ψ(n)定义为小于n且与n互质的正整数的个数。例如ψ(6) = 2,这是因为小于6且与6互质的数有1和5共两个数;再如ψ(7) = 6,这是因为互质数有1,2,3,5,6共6个。
欧拉在公元前300多年就发现了ψ函数的一个十分有趣的性质,那就是对于任意小于n且与n互质的正整数m,总有mψ(n) mod n = 1。例如,5ψ(6) mod 6 = 52 mod 6= 25 mod 6 =1。也就是说,在对n求余的运算下,ψ(n)指数具有周期性。
当n很小时,计算ψ(n)并不难,使用穷举法即可求出;但当n很大时,计算ψ(n)就十分困难了,其运算量与判断n是否为质数的情况相当。不过在特殊情况下,利用ψ函数的两个性质,可以极大地减少运算量。
性质1:如果p是质数,则ψ(p) = (p-1)。
性质2:如果p与q均为质数,则ψ(p·q) = ψ(p)·ψ(q) = (p-1)(q-1)。
RSA算法正是注意到这两条性质来设计公共密钥加密系统的,p与q的乘积n可以作为公共密钥公布出来,而n的因子p和q则包含在专用密钥中,可以用来解密。如果解密需要用到ψ(n),收信方由于知道因子p和q,可以方便地算出ψ(n) = (p-1)(q-1)。如果窃听者窃得了n,但由于不知道它的因子p与q,则很难求出ψ(n)。这时,窃听者要么强行算出ψ(n),要么对n进行因数分解求得p与q。然而,我们知道,在大数范围内作合数分解是十分困难的,因此窃密者很难成功。
有了关于ψ函数的认识,我们再来分析RSA算法的工作原理:
(1) 密钥配制。设m是要加密的信息,任选两个大质数p与q,使得 ;选择正整数e,使得e与ψ(n) = (p-1)(q-1)互质。
利用辗转相除法,计算d,使得ed mod ψ(n) = ,即ed = kψ(n) +1,其中k为某一正整数。
公共密钥为(e,n),其中没有包含任何有关n的因子p和q的信息。
专用密钥为(d,n),其中d隐含有因子p和q的信息。
(2) 加密过程。使用公式(12-3)对明文m进行加密,得密文c。
(3) 解密过程。使用(d,n)对密文c进行解密,计算过程为:
cd mod n = (me mod n)d mod n
= med mod n
= m(kψ(n) + 1) mod n
= (mkψ(n) mod n)·(m mod n)
= m
m即为从密文c中恢复出来的明文。
例如,假设我们需要加密的明文代码信息为m = 14,则:
选择e = 3,p = 5,q = 11;
计算出n = p·q = 55,(p-1)(q-1) = 40,d = 27;
可以验证:(e·d) mod (p-1)(q-1) = 81 mod 40 = 1;
加密:c = me mod n = 143 mod 55 = 49;
解密:m = cd mod n = 4927 mod 55 = 14。
关于RSA算法,还有几点需要进一步说明:
(1) 之所以要求e与(p-1)(q-1)互质,是为了保证 ed mod (p-1)(q-1)有解。
(2) 实际 *** 作时,通常先选定e,再找出并确定质数p和q,使得计算出d后它们能满足公式(12-3)。常用的e有3和65537,这两个数都是费马序列中的数。费马序列是以17世纪法国数学家费马命名的序列。
(3) 破密者主要通过将n分解成p·q的办法来解密,不过目前还没有办法证明这是唯一的办法,也可能有更有效的方法,因为因数分解问题毕竟是一个不断发展的领域,自从RSA算法发明以来,人们已经发现了不少有效的因数分解方法,在一定程度上降低了破译RSA算法的难度,但至今还没有出现动摇RSA算法根基的方法。
(4) 在RSA算法中,n的长度是控制该算法可靠性的重要因素。目前129位、甚至155位的RSA加密勉强可解,但目前大多数加密程序均采用231、308甚至616位的RSA算法,因此RSA加密还是相当安全的。
据专家测算,攻破512位密钥RSA算法大约需要8个月时间;而一个768位密钥RSA算法在2004年之前无法攻破。现在,在技术上还无法预测攻破具有2048位密钥的RSA加密算法需要多少时间。美国Lotus公司悬赏1亿美元,奖励能破译其Domino产品中1024位密钥的RSA算法的人。从这个意义上说,遵照SET协议开发的电子商务系统是绝对安全的。
RSA算法它是第一个既能用于数据加密也能用于数字签名的算法。它易于理解和 *** 作,也很流行。算法的名字以发明者的名字命名:Ron Rivest, Adi Shamir 和Leonard
Adleman。但RSA的安全性一直未能得到理论上的证明。它经历了各种攻击,至今未被完全攻破。
一、RSA算法 :
首先, 找出三个数, p, q, r,
其中 p, q 是两个相异的质数, r 是与 (p-1)(q-1) 互质的数
p, q, r 这三个数便是 private key
接著, 找出 m, 使得 rm == 1 mod (p-1)(q-1)
这个 m 一定存在, 因为 r 与 (p-1)(q-1) 互质, 用辗转相除法就可以得到了
再来, 计算 n = pq
m, n 这两个数便是 public key
编码过程是, 若资料为 a, 将其看成是一个大整数, 假设 a <n
如果 a >= n 的话, 就将 a 表成 s 进位 (s <= n, 通常取 s = 2^t),
则每一位数均小於 n, 然後分段编码
接下来, 计算 b == a^m mod n, (0 <= b <n),
b 就是编码後的资料
解码的过程是, 计算 c == b^r mod pq (0 <= c <pq),
於是乎, 解码完毕 等会会证明 c 和 a 其实是相等的 :)
如果第三者进行窃听时, 他会得到几个数: m, n(=pq), b
他如果要解码的话, 必须想办法得到 r
所以, 他必须先对 n 作质因数分解
要防止他分解, 最有效的方法是找两个非常的大质数 p, q,
使第三者作因数分解时发生困难
<定理>
若 p, q 是相异质数, rm == 1 mod (p-1)(q-1),
a 是任意一个正整数, b == a^m mod pq, c == b^r mod pq,
则 c == a mod pq
证明的过程, 会用到费马小定理, 叙述如下:
m 是任一质数, n 是任一整数, 则 n^m == n mod m
(换另一句话说, 如果 n 和 m 互质, 则 n^(m-1) == 1 mod m)
运用一些基本的群论的知识, 就可以很容易地证出费马小定理的
<证明>
因为 rm == 1 mod (p-1)(q-1), 所以 rm = k(p-1)(q-1) + 1, 其中 k 是整数
因为在 modulo 中是 preserve 乘法的
(x == y mod z and u == v mod z => xu == yv mod z),
所以, c == b^r == (a^m)^r == a^(rm) == a^(k(p-1)(q-1)+1) mod pq
1. 如果 a 不是 p 的倍数, 也不是 q 的倍数时,
则 a^(p-1) == 1 mod p (费马小定理) => a^(k(p-1)(q-1)) == 1 mod p
a^(q-1) == 1 mod q (费马小定理) => a^(k(p-1)(q-1)) == 1 mod q
所以 p, q 均能整除 a^(k(p-1)(q-1)) - 1 => pq | a^(k(p-1)(q-1)) - 1
即 a^(k(p-1)(q-1)) == 1 mod pq
=> c == a^(k(p-1)(q-1)+1) == a mod pq
2. 如果 a 是 p 的倍数, 但不是 q 的倍数时,
则 a^(q-1) == 1 mod q (费马小定理)
=> a^(k(p-1)(q-1)) == 1 mod q
=> c == a^(k(p-1)(q-1)+1) == a mod q
=> q | c - a
因 p | a
=> c == a^(k(p-1)(q-1)+1) == 0 mod p
=> p | c - a
所以, pq | c - a => c == a mod pq
3. 如果 a 是 q 的倍数, 但不是 p 的倍数时, 证明同上
4. 如果 a 同时是 p 和 q 的倍数时,
则 pq | a
=> c == a^(k(p-1)(q-1)+1) == 0 mod pq
=> pq | c - a
=> c == a mod pq
Q.E.D.
这个定理说明 a 经过编码为 b 再经过解码为 c 时, a == c mod n (n = pq)
但我们在做编码解码时, 限制 0 <= a <n, 0 <= c <n,
所以这就是说 a 等於 c, 所以这个过程确实能做到编码解码的功能
二、RSA 的安全性
RSA的安全性依赖于大数分解,但是否等同于大数分解一直未能得到理论上的证明,因为没有证明破解
RSA就一定需要作大数分解。假设存在一种无须分解大数的算法,那它肯定可以修改成为大数分解算法。目前, RSA
的一些变种算法已被证明等价于大数分解。不管怎样,分解n是最显然的攻击方法。现在,人们已能分解多个十进制位的大素数。因此,模数n
必须选大一些,因具体适用情况而定。
三、RSA的速度
由于进行的都是大数计算,使得RSA最快的情况也比DES慢上倍,无论是软件还是硬件实现。速度一直是RSA的缺陷。一般来说只用于少量数据加密。
四、RSA的选择密文攻击
RSA在选择密文攻击面前很脆弱。一般攻击者是将某一信息作一下伪装( Blind),让拥有私钥的实体签署。然后,经过计算就可得到它所想要的信息。实际上,攻击利用的都是同一个弱点,即存在这样一个事实:乘幂保留了输入的乘法结构:
( XM )^d = X^d *M^d mod n
前面已经提到,这个固有的问题来自于公钥密码系统的最有用的特征--每个人都能使用公钥。但从算法上无法解决这一问题,主要措施有两条:一条是采用好的公
钥协议,保证工作过程中实体不对其他实体任意产生的信息解密,不对自己一无所知的信息签名;另一条是决不对陌生人送来的随机文档签名,签名时首先使用
One-Way HashFunction 对文档作HASH处理,或同时使用不同的签名算法。在中提到了几种不同类型的攻击方法。
五、RSA的公共模数攻击
若系统中共有一个模数,只是不同的人拥有不同的e和d,系统将是危险的。最普遍的情况是同一信息用不同的公钥加密,这些公钥共模而且互质,那末该信息无需私钥就可得到恢复。设P为信息明文,两个加密密钥为e1和e2,公共模数是n,则:
C1 = P^e1 mod n
C2 = P^e2 mod n
密码分析者知道n、e1、e2、C1和C2,就能得到P。
因为e1和e2互质,故用Euclidean算法能找到r和s,满足:
r * e1 + s * e2 = 1
假设r为负数,需再用Euclidean算法计算C1^(-1),则
( C1^(-1) )^(-r) * C2^s = P mod n
另外,还有其它几种利用公共模数攻击的方法。总之,如果知道给定模数的一对e和d,一是有利于攻击者分解模数,一是有利于攻击者计算出其它成对的e’和d’,而无需分解模数。解决办法只有一个,那就是不要共享模数n。
RSA的小指数攻击。 有一种提高 RSA速度的建议是使公钥e取较小的值,这样会使加密变得易于实现,速度有
所提高。但这样作是不安全的,对付办法就是e和d都取较大的值。
RSA算法是
第一个能同时用于加密和数字签名的算法,也易于理解和 *** 作。RSA是被研究得最广泛的公钥算法,从提出到现在已近二十年,经历了各种攻击的考验,逐渐为人
们接受,普遍认为是目前最优秀的公钥方案之一。RSA的安全性依赖于大数的因子分解,但并没有从理论上证明破译RSA的难度与大数分解难度等价。即RSA
的重大缺陷是无法从理论上把握它的保密性能
如何,而且密码学界多数人士倾向于因子分解不是NPC问题。
RSA的缺点主要有:A)产生密钥很麻烦,受到素数产生技术的限制,因而难以做到一次一密。B)分组长度太大,为保证安全性,n 至少也要 600
bits
以上,使运算代价很高,尤其是速度较慢,较对称密码算法慢几个数量级;且随着大数分解技术的发展,这个长度还在增加,不利于数据格式的标准化。目
前,SET( Secure Electronic Transaction )协议中要求CA采用比特长的密钥,其他实体使用比特的密钥。
C语言实现
#include <stdio.h>
int candp(int a,int b,int c)
{ int r=1
b=b+1
while(b!=1)
{
r=r*a
r=r%c
b--
}
printf("%d\n",r)
return r
}
void main()
{
int p,q,e,d,m,n,t,c,r
char s
printf("please input the p,q: ")
scanf("%d%d",&p,&q)
n=p*q
printf("the n is %3d\n",n)
t=(p-1)*(q-1)
printf("the t is %3d\n",t)
printf("please input the e: ")
scanf("%d",&e)
if(e<1||e>t)
{
printf("e is error,please input again: ")
scanf("%d",&e)
}
d=1
while(((e*d)%t)!=1) d++
printf("then caculate out that the d is %d\n",d)
printf("the cipher please input 1\n")
printf("the plain please input 2\n")
scanf("%d",&r)
switch(r)
{
case 1: printf("input the m: ")/*输入要加密的明文数字*/
scanf("%d",&m)
c=candp(m,e,n)
printf("the cipher is %d\n",c)break
case 2: printf("input the c: ")/*输入要解密的密文数字*/
scanf("%d",&c)
m=candp(c,d,n)
printf("the cipher is %d\n",m)break
}
getch()
}
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)