异步处理在流程图中怎么画

异步处理在流程图中怎么画,第1张

异步处理在流程图中:多个请求连线,然后多个response,并配一说明即可。

异步处理就是按照不同步的程序处理问题。异步处理与同步处理是对立的,而产生他们的是多线程或者多进程。异步处理的好处就是提高设备使用率,从而在宏观上提升程序运行效率,但是弊端就是容易出现冲突 *** 作和数据脏读。同步则刚好相反,同步是一种降低设备使用率,在宏观上降低了程序的运行效率,而且很多系统或者是运行环境在处理同步的时候为了维持同步的有效性也会付出许多格外的系统资源开支,对性能影响相当大。但是同步保证了程序运行的正确性与数据的完整性。

这其中的工作都是在主线程中完成的,这就导致了主线程频繁的处理 UI 绘制的工作,如果要绘制的元素过多,过于频繁,就会造成卡顿。

解决方案使用异步绘制就是:

那么是否可以将复杂的绘制过程放到后台线程中执行,从而减轻主线程负担,来提升UI流畅度呢?

可以的,系统给我们留下的异步绘制的口子,请看下面的流程图,它是我们进行基本绘制的基础:

先从下面的系统绘制流程图来了解一下系统绘制流程:

下面看一下异步绘制的时序图能更好的理解异步绘制流程:

简单的调用:

当我们调用一个函数的时候,如果这个函数的执行过程是很耗时的,我们就必须要等待,但是我们有时候并不急着要这个函数返回的结果。因此,我们可以让被调者立即返回,让他在后台慢慢的处理这个请求。对于调用者来说,则可以先处理一些其他事情,在真正需要数据的时候再去尝试获得需要的数据(这个真正需要数据的位置也就是上文提到的阻塞点)。这也是Future模式的核心思想:异步调用。

到了这里,你可能会想CountDownLatch不是也可以实现类似的功能的吗?也是可以让耗时的任务通过子线程的方式去执行,然后设置一个阻塞点等待返回的结果,情况貌似是这样的!但有时发现CountDownLatch只知道子线程的完成情况是不够的,如果在子线程完成后获取其计算的结果,那CountDownLatch就有些捉襟见衬了,所以JDK提供的Future类,不仅可以在子线程完成后收集其结果,还可以设定子线程的超时时间,避免主任务一直等待。

看到这里,似乎恍然大悟了!CountDownLatch无法很好的洞察子线程执行的结果,使用Future就可以完成这一 *** 作,那么Future何方神圣!下边我们就细细聊一 下。

虽然,Future模式不会立即返回你需要的数据,但是,他会返回一个契约 ,以后在使用到数据的时候就可以通过这个契约获取到需要的数据。

上图显示的是一个串行程序调用的流程,可以看出当有一个程序执行的时候比较耗时的时候,其他程序必须等待该耗时 *** 作的结束,这样的话客户端就必须一直等待,知道返回数据才执行其他的任务处理。

上图展示的是Future模式流程图,在广义的Future模式中,虽然获取数据是一个耗时的 *** 作,但是服务程序不等数据完成就立即返回客户端一个伪造的数据(就是上述说的“契约”),实现了Future模式的客户端并不急于对其进行处理,而是先去处理其他业务,充分利用了等待的时间,这也是Future模式的核心所在,在完成了其他数据无关的任务之后,最后在使用返回比较慢的Future数据。这样在整个调用的过程中就不会出现长时间的等待,充分利用时间,从而提高系统效率。

1、Future主要角色

2、Future的核心结构图如下:

上述的流程就是说:Data为核心接口,这是客户端希望获取的数据,在Future模式中,这个Data接口有两个重要的实现,分别是:RealData和FutureData。RealData就是真实的数据,FutureData他是用来提取RealData真是数据的接口实现,用于立即返回得到的,他实际上是真实数据RealData的代理,封装了获取RealData的等待过程。

说了这些理论的东西,倒不如直接看代码来的直接些,请看代码!

主要包含以下5个类,对应着Future模式的主要角色:

1、Data接口

2、FutureData代码

3、RealData代码

4、Client代码

5、Main

6、执行结果:

上述实现了一个简单的Future模式的实现,因为这是一个很常用的模式,在JDK中也给我们提供了对应的方法和接口,先看一下实例:

这里的RealData 实现了Callable接口,重写了call方法,在call方法里边实现了构造真实数据耗时的 *** 作。

执行结果:

上述代码,通过:FutureTask<String>futureTask = new FutureTask<>(new RealData("Hello"))这一行构造了一个futureTask 对象,表示这个任务是有返回值的,返回类型为String,下边看一下FutureTask的类图关系:

FutureTask实现了RunnableFuture接口,RunnableFuture接口继承了Future和Runnable接口。因为RunnableFuture实现了Runnable接口,因此FutureTask可以提交给Executor进行执行,FutureTask有两个构造方法,如下:

构造方法1,参数为Callable:

构造方法2,参数为Runnable:

上述的第二个构造方法,传入的是Runnable接口的话,会通过Executors.callable()方法转化为Callable,适配过程如下:

这里为什么要将Runnable转化为Callable哪?首先看一下两者之间的区别:

最关键的是第二点,就是Callable具有返回值,而Runnable没有返回值。Callable提供了检查计算是否完成的方法,以等待计算的完成,并获取计算的结果。

计算完成后只能使用 get 方法来获取结果,如果线程没有执行完,Future.get()方法可能会阻塞当前线程的执行;如果线程出现异常,Future.get()会throws InterruptedException或者ExecutionException;如果线程已经取消,会抛出CancellationException。取消由cancel 方法来执行。isDone确定任务是正常完成还是被取消了。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/11775922.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-18
下一篇 2023-05-18

发表评论

登录后才能评论

评论列表(0条)

保存