matlab中人脸识别效果不好

matlab中人脸识别效果不好,第1张

在使用matlab进行人脸识别时,可能存在多方面的原因导致效果不好。首先,人脸识别需要大量的数据集进行训练,如果使用的数据集不够大或者不够质量好,那么识别效果会大打折扣。其次,算法的选择也是一个关键因素,如果选择的算法不适合当前的场景,则效果也可能不理想。此外,对于不同的人脸特征,可能需要不同的算法进行处理,如果使用同一种算法对所有人脸进行处理,则效果也可能不够好。因此,在使用matlab进行人脸识别时,需要综合考虑以上因素,对系统进行优化和调整,以获得更好的识别效果。

这是我写的程序,参照《模式识别》张学工第9章。

a1=imread('a1.jpg')

a2=imread('a2.jpg')

b1=imread('b1.jpg')

b2=imread('b2.jpg')

a1=rgb2gray(a1)

a2=rgb2gray(a2)

b1=rgb2gray(b1)

b2=rgb2gray(b2)

figure,imshow(a1)

figure,imshow(a2)

figure,imshow(b1)

figure,imshow(b2)

a1=double(a1)

a2=double(a2)

b1=double(b1)

b2=double(b2)

a1_lie=a1(:)

a2_lie=a2(:)

b1_lie=b1(:)

b2_lie=b2(:)

c=cat(1,a1_lie',a2_lie',b1_lie',b2_lie')

c_mean=mean(c)

X=[a1_lie-c_mean',a2_lie-c_mean',b1_lie-c_mean',b2_lie-c_mean']

R=X'*X % R是4×4的矩阵

[p,q]=eig(R)

u=diag(q) % u是4×1的列向量

u=flipud(u) % flipud(u)实现矩阵的上下翻转, u是4×1的列向量

v=fliplr(p) % fliplr(p)实现矩阵的左右翻转,v是4×4的矩阵

e=zeros(36000,4)

for m=1:3

e(:,m)=X*v(:,m)./(u(m)^(-0.5)) % 参见《模式识别》P226公式9-18

end

p1=zeros(200,180)

p2=zeros(200,180)

p3=zeros(200,180)

for m=1:36000

p1(m)=e(m)

p2(m)=e(m+36000)

p3(m)=e(m+72000)

end

p1=mat2gray(p1)

p2=mat2gray(p2)

p3=mat2gray(p3)

figure,imshow(p1) % 显示第1特征脸

figure,imshow(p2) % 显示第2特征脸

figure,imshow(p3) % 显示第3特征脸

new=c*e(:,1:3) %分别计算4个训练样本分别在第1、第2、第3、特征脸上的投影

p1=imread('p_test1.jpg')%读入一个测试样本

p1=rgb2gray(p1)

figure,imshow(p1)

p2=double(p1(:))

test=p2'*e(:,1:3)%计算测试样本在3个特征脸上的投影

error=zeros(4,1)

for m=1:4

error(m)=norm((new(m,:)-test))

end

[distence,index]=sort(error) %将列向量error中的数据按从小到大排列

if index(1)==1

result=1

elseif index(1)==2

result=1

elseif index(1)==3

result=2

elseif index(1)==4

result=2

end

result %result为1时表示测试样本属于第1个人,为2时表示测试样本属于第2个人


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/11847186.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-19
下一篇 2023-05-19

发表评论

登录后才能评论

评论列表(0条)

保存