a1=imread('a1.jpg')
a2=imread('a2.jpg')
b1=imread('b1.jpg')
b2=imread('b2.jpg')
a1=rgb2gray(a1)
a2=rgb2gray(a2)
b1=rgb2gray(b1)
b2=rgb2gray(b2)
figure,imshow(a1)
figure,imshow(a2)
figure,imshow(b1)
figure,imshow(b2)
a1=double(a1)
a2=double(a2)
b1=double(b1)
b2=double(b2)
a1_lie=a1(:)
a2_lie=a2(:)
b1_lie=b1(:)
b2_lie=b2(:)
c=cat(1,a1_lie',a2_lie',b1_lie',b2_lie')
c_mean=mean(c)
X=[a1_lie-c_mean',a2_lie-c_mean',b1_lie-c_mean',b2_lie-c_mean']
R=X'*X % R是4×4的矩阵
[p,q]=eig(R)
u=diag(q) % u是4×1的列向量
u=flipud(u) % flipud(u)实现矩阵的上下翻转, u是4×1的列向量
v=fliplr(p) % fliplr(p)实现矩阵的左右翻转,v是4×4的矩阵
e=zeros(36000,4)
for m=1:3
e(:,m)=X*v(:,m)./(u(m)^(-0.5)) % 参见《模式识别》P226公式9-18
end
p1=zeros(200,180)
p2=zeros(200,180)
p3=zeros(200,180)
for m=1:36000
p1(m)=e(m)
p2(m)=e(m+36000)
p3(m)=e(m+72000)
end
p1=mat2gray(p1)
p2=mat2gray(p2)
p3=mat2gray(p3)
figure,imshow(p1) % 显示第1特征脸
figure,imshow(p2) % 显示第2特征脸
figure,imshow(p3) % 显示第3特征脸
new=c*e(:,1:3) %分别计算4个训练样本分别在第1、第2、第3、特征脸上的投影
p1=imread('p_test1.jpg')%读入一个测试样本
p1=rgb2gray(p1)
figure,imshow(p1)
p2=double(p1(:))
test=p2'*e(:,1:3)%计算测试样本在3个特征脸上的投影
error=zeros(4,1)
for m=1:4
error(m)=norm((new(m,:)-test))
end
[distence,index]=sort(error) %将列向量error中的数据按从小到大排列
if index(1)==1
result=1
elseif index(1)==2
result=1
elseif index(1)==3
result=2
elseif index(1)==4
result=2
end
result %result为1时表示测试样本属于第1个人,为2时表示测试样本属于第2个人
function []=TwoDPCA
%%%%%%%%%%%%%特征脸显示已正确,训练与测试没有分开。
% Face recognition
clear all
close all
clc
M=200%%%%
traincopy=5%%%表示同一个人有几张相片。
eignum=3%%%选取的特征个数。
cel=cell(1,M)
cellafter=cell(1,M)
tt=clock
S=[]
ii=1
str=strcat('E:\三维人脸\2dfacedatabase\ORL\s1\1.pgm')
img=imread(str)
[ia ib]=size(img)
sum=zeros(ia,ib)
B=zeros(ia,ib)
for i=1:40
for j=1:5
str=strcat('E:\三维人脸\2dfacedatabase\ORL\s',int2str(i),'\',int2str(j),'.pgm')
eval('img=imread(str)')
sum=double(sum)+double(img)
cel{1,ii}=img
ii=ii+1
end
end
meanA=sum/M
cov=zeros(ib)
for i=1:M
img=cel{1,i}
B=double(img)-double(meanA)
temp=B'*B
cov=double(cov)+double(temp)
end
[vv dd]=eig(cov)
num2=size(vv)
% Sort and eliminate those whose eigenvalue is zero
v=[]
d=[]
for i=1:size(vv,2)
if(dd(i,i)>1e-4)
v=[v vv(:,i)]
d=[d dd(i,i)]
end
end
num1=size(v,2)
%sort, will return an ascending sequence
[B index]=sort(d)
ind=zeros(size(index))
dtemp=zeros(size(index))
vtemp=zeros(size(v))
len=length(index)
for i=1:len
dtemp(i)=B(len+1-i)
ind(i)=len+1-index(i)
vtemp(:,ind(i))=v(:,i)
end
d=dtemp
v=vtemp
imgafter=[]
for i=1:M
for j=1:eignum
img=cel{1,i}
temp1=double(img)*double(v(:,j))
imgafter=[imgafter temp1]
end
cellafter{1,i}=imgafter
imgafter=[]
end
timeconsume=etime(clock,tt)
testimg=M/traincopy
findimgnum=traincopy
suc=0
% figure(5)
for k=1:testimg
InputImage =imread(strcat('E:\三维人脸\2dfacedatabase\ORL\s',int2str(k),'\10.pgm'))
testafter=[]
for j=1:eignum
temp=double(InputImage)*double(v(:,j))
testafter=[testafter temp]
end
% Find Euclidean distance
e=[]
for i=1:M
tempA=double(testafter)-double(cellafter{1,i})
total=0
for j=1:eignum
aa=norm(tempA(:,j))
total=total+aa
end
e=[e total]
end
[C index]=sort(e)
min=index(1)
%%%%%%%计算正确率
testingroup=floor((min-1)/traincopy)+1%%计算要测试的图像所在的组
if testingroup==k
suc=suc+1
else
fprintf('%d.jpg fails to match!\n',k)
end
% %%%%%%%%%%%%%%%%%%%显示所有找到的与测试图像为同一个人的图片(可)。(显示所有与测试图片最小距离的那组,而不是比较出来的最小的5个)
% subplot(testimg,findimgnum+1,(k-1)*(findimgnum+1)+1)% subplot(行数,列数,放图像位置的序数)
% imshow(InputImage)
%
% for i=1:findimgnum
% temppos=(testingroup-1)*traincopy+i
% str=strcat('E:\三维人脸\testpic\orl\',int2str(temppos),'.pgm') %concatenates two strings that form the name of the image
% eval('img1=imread(str)')
% subplot(testimg,findimgnum+1,(k-1)*(findimgnum+1)+i+1)
% imshow(img1)
% drawnow
% end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
end
sucrate=suc/M*traincopy*100
fprintf('%2.1f%% matched successfully!\n',sucrate)
fprintf('it takes %3.2f S\n',timeconsume)
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)