java怎么连接sparksql集群

java怎么连接sparksql集群,第1张

首先确保SQLSERVER服务正在运行,并可以允许远程访问连接 然后按如下步骤进行连接 1.安装JDBC驱动 1)下载JDBC驱动 2)执行sqljdbc_4.0.2206.100_chs.exe解压驱动文件 3)拷贝以下目录中的sqljdbc_auth.dll到Windows的System32目录。

创建 SQLContext

Spark SQL 中所有相关功能的入口点是 SQLContext 类或者它的子类, 创建一个 SQLContext 的所有需要仅仅是一个 SparkContext。

使用 Scala 创建方式如下:

val sc: SparkContext // An existing SparkContext.

val sqlContext = new org.apache.spark.sql.SQLContext(sc)

// this is used to implicitly convert an RDD to a DataFrame.

import sqlContext.implicits._

使用 Java 创建方式如下:

JavaSparkContext sc = ...// An existing JavaSparkContext.

SQLContext sqlContext = new org.apache.spark.sql.SQLContext(sc)

使用 Python 创建方式如下:

from pyspark.sql import SQLContext

sqlContext = SQLContext(sc)

除了一个基本的 SQLContext,你也能够创建一个 HiveContext,它支持基本 SQLContext 所支持功能的一个超集。它的额外的功能包括用更完整的 HiveQL 分析器写查询去访问 HiveUDFs 的能力、 从 Hive 表读取数据的能力。用 HiveContext 你不需要一个已经存在的 Hive 开启,SQLContext 可用的数据源对 HiveContext 也可用。HiveContext 分开打包是为了避免在 Spark 构建时包含了所有 的 Hive 依赖。如果对你的应用程序来说,这些依赖不存在问题,Spark 1.3 推荐使用 HiveContext。以后的稳定版本将专注于为 SQLContext 提供与 HiveContext 等价的功能。

用来解析查询语句的特定 SQL 变种语言可以通过 spark.sql.dialect 选项来选择。这个参数可以通过两种方式改变,一种方式是通过 setConf 方法设定,另一种方式是在 SQL 命令中通过 SET key=value 来设定。对于 SQLContext,唯一可用的方言是 “sql”,它是 Spark SQL 提供的一个简单的 SQL 解析器。在 HiveContext 中,虽然也支持”sql”,但默认的方言是 “hiveql”,这是因为 HiveQL 解析器更完整。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/11970575.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-20
下一篇 2023-05-20

发表评论

登录后才能评论

评论列表(0条)

保存