常规PID,用Matlab里的Simulink模块仿真,建立你要做的动力学模型的传函或者状态空间。PID参数调节可用临界比度法。
模糊PID就麻烦了,打开Matlab中FIS模块,一般都用二阶模糊?输入E,EC的隶属函数,一般为高斯,和输出模糊Kp,Ki,Kd,一般为三角。还要整定模糊规则,再加载到Simulink里。调节模糊因子Gu,Ge,Gec,设置模糊PID的参数。
总之,你这个问题在白度知道里很难说清楚。
PIC单片机的你看一下//*********************************************************************************
#include <pic.h>
#include <pic16f684.h>
#include <math.h>
#include <stdlib.h>
void Init()
void PID()
void Set_Constants()
bit flag1,do_PID,int_flag
signed char en0, en1, en2, en3, term1_char, term2_char, off_set
unsigned char temp
short int temp_int
unsigned short int ki, kd, kp
signed int SumE_Min, SumE_Max, SumE, integral_term, derivative_term, un
signed long Cn
// __CONFIG _CP_OFF &_CPD_OFF &_BOD_OFF &_MCLRE_ON &_WDT_OFF &_INTRC_OSC_NOCLKOUT &_FCMEN_ON
//***************************************************************************
// Positional PID 256 Hz
//***************************************************************************
//***************************************************************************
//Main() - Main Routine
//***************************************************************************
void main()
{
Init() //Initialize 12F629 Microcontroller
Set_Constants() //Get PID coefficients ki, kp and kd
while(1) //Loop Forever
{
if(do_PID){
PID()
}
}
}
//***************************************************************************
//Init - Initialization Routine
//***************************************************************************
void Init()
{
PORTA = 0
TRISA = 0b00101101 // Set RA4 and RA2 as outputs
PORTC = 0
TRISC = 0b00000011 // Set RC0 and RC1 as inputs, rest outputs
CMCON0 = 0x07 // Disable the comparator
IRCF0 = 1 // Used to set intrc speed to 8 MHz
IRCF1 = 1 // Used to set intrc speed to 8 MHz
IRCF2 = 1 // Used to set intrc speed to 8 MHz
CCP1CON = 0b01001100 // Full bridge PWM forward
ECCPAS = 0 // Auto_shutdown is disabled for now
PR2 = 0x3F // Sets PWM Period at 31.2 kHz
T2CON = 0 // TMR2 Off with no prescale
CCPR1L = 0 // Sets Duty Cycle to zero
TMR2ON = 1 // Start Timer2
ANSEL = 0b00110101 // Configure AN0,AN2,AN4 and AN5 as analog
VCFG = 0 // Use Vdd as Ref
ADFM = 1 // Right justified A/D result
ADCS0 = 1 // 16 TOSC prescale
ADCS1 = 0
ADCS2 = 1
CHS0 = 0 // Channel select AN0
CHS1 = 0
CHS2 = 0
ADON = 1 //Turn A/D on
en0 = en1 = en2 = en3 = term1_char = term2_char =0
ki = kd = 0
kp = off_set = 0
temp_int = integral_term = derivative_term = un =0
SumE_Max = 30000
SumE_Min = 1 - SumE_Max
do_PID = 1 // Allowed to do PID function
T0CS = 0 // Timer0 as timer not a counter
TMR0 = 10 // Preload value
PSA = 0 // Prescaler to Timer0
PS0 = 0 // Prescale to 32 =>256 Hz
PS1 = 0
PS2 = 1
INTCON = 0
PIE1 = 0
T0IE = 1 // Enable Timer0 int
GIE = 1
return
}
void PID() // The from of the PID is C(n) = K(E(n) + (Ts/Ti)SumE + (Td/Ts)[E(n) - E(n-1)])
{
integral_term = derivative_term = 0
// Calculate the integral term
SumE = SumE + en0 // SumE is the summation of the error terms
if(SumE >SumE_Max){ // Test if the summation is too big
SumE = SumE_Max
}
if(SumE <SumE_Min){ // Test if the summation is too small
SumE = SumE_Min
} // Integral term is (Ts/Ti)*SumE where Ti is Kp/Ki
// and Ts is the sampling period
// Actual equation used to calculate the integral term is
// Ki*SumE/(Kp*Fs*X) where X is an unknown scaling factor
// and Fs is the sampling frequency
integral_term = SumE / 256 // Divide by the sampling frequency
integral_term = integral_term * ki // Multiply Ki
integral_term = integral_term / 16 // combination of scaling factor and Kp
// Calculate the derivative term
derivative_term = en0 - en3
if(derivative_term >120){ // Test if too large
derivative_term = 120
}
if(derivative_term <-120){ // test if too small
derivative_term = -120
} // Calculate derivative term using (Td/Ts)[E(n) - E(n-1)]
// Where Td is Kd/Kp
// Actual equation used is Kd(en0-en3)/(Kp*X*3*Ts)
derivative_term = derivative_term * kd // Where X is an unknown scaling factor
derivative_term = derivative_term >>5 // divide by 32 precalculated Kp*X*3*Ts
if(derivative_term >120){
derivative_term = 120
}
if(derivative_term <-120){
derivative_term = -120
}
// C(n) = K(E(n) + (Ts/Ti)SumE + (Td/Ts)[E(n) - E(n-1)])
Cn = en0 + integral_term + derivative_term // Sum the terms
Cn = Cn * kp / 1024 // multiply by Kp then scale
if(Cn >= 1000) // Used to limit duty cycle not to have punch through
{
Cn = 1000
}
if(Cn <= -1000)
{
Cn = -1000
}
if(Cn == 0){ // Set the speed of the PWM
DC1B1 = DC1B1 = 0
CCPR1L = 0
}
if(Cn >0){ // Motor should go forward and set the duty cycle to Cn
P1M1 = 0 // Motor is going forward
temp = Cn
if(temp^0b00000001){
DC1B0 = 1
}
else{
DC1B0 = 0
}
if(temp^0b00000010){
DC1B1 = 1
}
else{
DC1B1 = 0
}
CCPR1L = Cn >>2 // Used to stop the pendulum from continually going around in a circle
off_set = off_set +1 // the offset is use to adjust the angle of the pendulum to slightly
if(off_set >55){ // larger than it actually is
off_set = 55
}
}
else { // Motor should go backwards and set the duty cycle to Cn
P1M1 = 1 // Motor is going backwards
temp_int = abs(Cn) // Returns the absolute int value of Cn
temp = temp_int // int to char of LS-Byte
if(temp^0b00000001){
DC1B0 = 1
}
else{
DC1B0 = 0
}
if(temp^0b00000010){
DC1B1 = 1
}
else{
DC1B1 = 0
}
CCPR1L = temp_int >>2 // Used to stop the pendulum from continually going around in a circle
off_set = off_set -1
if(off_set <-55){
off_set = -55
}
}
en3 = en2 // Shift error signals
en2 = en1
en1 = en0
en0 = 0
do_PID = 0 // Done
RA4 = 0 // Test flag to measure the speed of the loop
return
}
void Set_Constants()
{
ANS2 = 1 // Configure AN2 as analog
ANS4 = 1 // Configure AN4 as analog
ANS5 = 1 // Configure AN5 as analog
ADFM = 1 // Right justified A/D result
CHS0 = 0 // Channel select AN4
CHS1 = 0
CHS2 = 1
temp = 200 // Gives delay
while(temp){
temp--
}
GODONE = 1
while(GODONE){
temp = 0 // Does nothing.....
}
ki = ADRESH <<8 // Store the A/D result to Integral Constant
ki = ki + ADRESL
CHS0 = 1 // Channel select AN5
CHS1 = 0
CHS2 = 1
temp = 200 // Gives delay
while(temp){
temp--
}
GODONE = 1
while(GODONE){
temp = 0 // Does nothing.....
}
kd = ADRESH <<8 // Store the A/D result to Differential Constant
kd = kd + ADRESL
CHS0 = 0 // Channel select AN2
CHS1 = 1
CHS2 = 0
temp = 200 // Gives delay
while(temp){
temp--
}
GODONE = 1
while(GODONE){
temp = 0 // Does nothing.....
}
kp = ADRESH <<8 // Store the A/D result to Proportional Constant
kp = kp + ADRESL
CHS0 = 0 // Channel select AN0
CHS1 = 0
CHS2 = 0
}
void interrupt Isr()
{
if(T0IF&&T0IE){
TMR0 = 10 // Preload value
T0IF = 0 // Clear Int Flag
// flag1 = (!flag1)
RA4 = 1
temp_int = 0
temp_int = ADRESH <<8 // Store the A/D result with offset
temp_int = temp_int + ADRESL - 512
en0 = temp_int + off_set/8 // Store to error function asuming no over-flow
do_PID = 1 // Allowed to do PID function
GODONE = 1 // Start next A/D cycle
}
else
{
PIR1 = 0
RAIF = 0
INTF = 0
}
if(temp_int >180){ //Check if error is too large (positive)
DC1B0 = DC1B1 = 0 // Stop PWM
CCPR1L = 0
en0 = en1 = en2 = en3 = term1_char = term2_char = off_set = 0 // Clear all PID constants
Cn = integral_term = derivative_term = SumE = RA4 = 0
do_PID = 0 // Stop doing PID
}
if(temp_int <-180){ //Check if error is too large (negative)
DC1B0 = DC1B1 = 0 // Stop PWM
CCPR1L = 0
en0 = en1 = en2 = en3 = term1_char = term2_char = off_set = 0 // Clear all PID constants
Cn = integral_term = derivative_term = SumE = RA4 = 0
do_PID = 0 // Stop doing PID
}
}
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)