识别率指的是通过人脸识别技术识别正确数占识别总数的百分比。
人脸识别算法分类
基于人脸特征点的识别算法(Feature-based recognition algorithms)。
基于整幅人脸图像的识别算法(Appearance-based recognition algorithms)。
基于模板的识别算法(Template-based recognition algorithms)。
利用神经网络进行识别的算法(Recognition algorithms using neural network)。
神经网络识别
基于光照估计模型理论
提出了基于Gamma灰度矫正的光照预处理方法,并且在光照估计模型的基础上,进行相应的光照补偿和光照平衡策略。
优化的形变统计校正理论
基于统计形变的校正理论,优化人脸姿态;
强化迭代理论
强化迭代理论是对DLFA人脸检测算法的有效扩展;
独创的实时特征识别理论
该理论侧重于人脸实时数据的中间值处理,从而可以在识别速率和识别效能之间,达到最佳的匹配效果
AI 算法识别率的计算公式通常是:正确识别率 = 正确识别的数量 / 测试样本的总数。例如,如果有100个测试样本,AI算法正确识别了90个,则AI算法识别率=90/100=0.9,即90% 的正确识别率。欢迎分享,转载请注明来源:内存溢出
评论列表(0条)