推荐一款免费的会员管理系统

推荐一款免费的会员管理系统,第1张

随着新时代的来临,对各行各业的经营模式都产生了一定的冲击,越来越多的商家希望有一款简单免费的会员管理软件,来充当自己的帮手。但是市面上那么多会员管理系统。哪一款是好用免费的呢?一款会员管理系统要具备什么功能在里面呢?

一、微信会员卡:这是一种吸粉利器,无需填单、无需实体会员卡,微信登录快速入会!同时,支持在线服务业务,储值/积分/优惠券/订单记录查询,在线充值、积分商城兑换等,全面培养消费粘性!

二、会员管理:简洁易用的会员管理体系:涵盖会员等级、储值、积分方案、智能提醒等会员功能,轻松实现会员体系的建立,会员可识别、可触达、可互动、可营销。

三、会员精准营销:要想营销效果好,就必须精细化。系统最好是内嵌RFM商业模型,目的是为了能够智能根据客户价值进行分类,商家可以对每一种客群进行一键营销和维护。另外,能够根据需求,通过各种条件灵活筛选客户,针对性进行营销也很重要。

四、在线预约:对于需要在线预约的服务商家而言,小程序在线预约能够合理引导客流,提升服务效率,客户免排队,体验更满意。

五、营销拓客:系统要懂营销,就必须深入市场、历经市场检验,探索出成功的爆款网红玩法,包括红包裂变、分销、拼团、体验价、限时秒杀、砍价、抽奖等,并进行工具化、模板化,提供众多能够一键复用的拓客营销方案,覆盖各个营销节日、各种场景,通过拓客小程序,可以快速上手发布启动,利于线上传播裂变,从而引爆活动,提升业绩。

以上是会员管理系统的重要功能,当然还有一些基础的功能,比如:前台收银、商品管理、智能报表、手机管店等基础功能去支撑门店最基础的管理和运营。而店盈易会员管理系统就可以很好的实现上面说到的这些功能。同时经过10年多的技术及业务沉淀,目前店盈易的客户超过10000家,客户遍及教育培训、服装零售、美容美发、汽车服务、旅游票务、加油站等几十个行业。是商家的不二之选!

马上注册免费体验:店盈易会员管理系统

我们都知道,所有的运营工作都是围绕着用户展开的。运营策略从某种程度来说,就是资源对用户的有效分配。那么,知道什么用户应该制定什么样的运营策略,就尤为重要了,而这就要依赖于我们的用户分层了。

在运营过程中,用户分层的作用很明显,它能 帮助我们把用户分成各个层次和群体,然后我们根据各个层次和群体的不同,才能有的放矢的制定出更精准、更有针对性的运营策略。

我们在运营工作中,经常会听到“用户画像”、“用户分层”、“用户分群”这几个词,貌似有些类似特别是后面两个,但如果严格说的话,还是有区别的。

本篇准确地说应该是包括了“用户分层+用户分群”,这里就统称为用户分层了。而本篇我们也会通过一个实例,用一张Excel表作为工具,从零开始一步一步的完成一次用户分层过程。

关于用户分层,我们需先明白以下几点:

一、用户分层在不同的行业中是不一样的,而且可能是多样化的。

比如滴滴打车,用软件打车的人是一种用户;司机也是一种用户;广告商也是一种用户。如果要做用户分层的话,就需要对这三种类型的用户分别做一套不同的用户分层体系。

二、用户分层在产品发展的不同阶段会有不同的变化。

比如我们区分价值用户和一般用户,

初期我们产品少,一个月买2次化200元钱可能就是我们的价值用户了。

随着公司的发展我们产品的不断增多,需要一个月买10次化5000元才有能算是我们的价值用户了。

三、用户分层需要定性和定量

如上面的例子一样,我们需要对用户有一个定性的过程,如价值用户、一般用户,或者VIP,超级VIP等等;然后必须要对此进行定量,比如消费多少金额才能算价值用户。

那么如何用科学化的手段进行一次用户分析,以确定各用户群体的行为特征,完成一次用户分层的过程,就必须要说到经典的RFM用户模型了。如下图:

RFM模型历史悠久,其理论知识这里就不阐述了,简单的说就是通过 最近一次消费(Recency)、消费频率(Frequency)、消费金额(Monetary)这三个指标 ,然后把每个指标按照实际的情况,分成5档,一共形成了125类的用户。然后为了执行方便,把125类的用户归纳成8大类, 如下图 ,最后根据这8大类用户的情况制定运营策略。

这里要说明的一点是,RFM模型不是互联网时代的产物,事实上在传统行业里也用的很广,所以其指标主要针对的是付费用户。 如果我们的互联网产品用户人群是免费用户,一样可以用这个RFM模型并使用它的方法 ,只是指标换成了 最后一次登录、登录频率、产品使用时间。

接下来我们就用实例来 *** 作一遍:

我们现在手上有500份付费用户数据,包含(用户、最后一次消费时间间隔、消费频率、消费金额)四个字段,我们如何进行用户分层并制定有效运营策略呢?

第一步:我们把数据导入或粘贴到Excel当中,再原有的4个表头基础上,再增加R值、F值、M值三个表头。做好这样一张Excel表,如下图:

(此处只选10条数据做实例)

第二步:分别确定好RFM这三个指标五档的标准。

这是比较难的一步,因为不同的行业不同的产品不同的阶段都有不同的划分标准。比如消费金额,1000个用户里面,最低1元,最高10000元。大部分情况下,20%的用户占据了80%的金额,而80%的用户占了20%的金额,是一个长尾的分布效果。所以我们不能简单的用最高金额/5,或者用户总数/5的平均分法,这样分出来的结果不能代表一个拥有类似行为表现的群体。

这个主要还是依靠大家在本身各自行业中的理解和实际场景需求来确定了。 当然,如果我们实在没有什么头绪的话,我们可以 通过散点图大致分辨一下 ,如下图:

大家可以看到,通过散点图,我们可以比较直观的看清用户的分布(上图为用户的消费金额分布)。 我们去分档的时候就尽可能的将密集的一部分分在一起,这样,该档用户群体的行为共性也就更大一点。

需要说明的是,这不是一个很严谨的分法,需要大家在实际过程中进行不断的调整。而如果我们面临海量数据的时候,最好是通过聚类算法等技术手段,才能更加科学精准的帮助我们进行判断。

以本例来说,我们最后定下了RFM各个指标下的五个分档标准。如图:

第三步:分别计算出每条记录的R、F、M值。

我们通过在Excel里面加入if判断,自动计算出该记录对应的R、F、M值,比如我们RFM分层表中,0001用户对应的R值,

即单元格E3:=IF(B3>10,1,IF(B3>8,2,IF(B3>5,3, IF(B3>3,4,5))))

我们来解释一下这条if判断语句:

同样的算法,我们写出计算每一条记录F值和M值的判断条件。

然后,我们把Excel的单元格往下拉,最后形成这样的图:

第四步:分别算出总的R、F、M的平均值。

这一步比较简单,我们以上全部算完之后,再最下面增加一行,用AVERAGE()计算出以上所有行数的平均值。如图:

第五步:根据每条记录的R、F、M值和所有记录的平均值,判断出每条记录的R、F、M值是在平均值之上,还是平均值之下。

首选,我们先增加三个表头,如图:

然后,我们用每一条记录的R值来R的平均值进行比较,如果<平均值则显示“低”,如果大于等于则显示“高”。

我们还是用If判断语句进行自动判断,以上图为例,用户0001的“R高低值”即:

这样,我们就变成了下图:

这个时候,我们发现了一个问题,当我们把单元格往下拉的时候,E3固然变成了E4,但E13也变成了E14,由于E13是一个固定格子的数字,我们不希望它随着单元格的下拉而改变。我们就需要在if语句中在E13两边加上“$”这个符号了。

如下:

同时,为了更直观,我们设置一个条件格式,若文本中含有“高”则背景色为红色,若含有“低”则背景色为绿色。这时候再往下拖一下单元格,就变成这样拉,如图:

第六步:根据比较值,进行八大类的归类。

接下来,我们就要根据我们的“R高低值”“F高低值”“M高低值”,自动计算出我们的用户层级拉。我们先加个表头“用户层级”。

这一次,我们要写一串稍微长一点的IF判断语句,如下:

本文所写的都是在Excel里面的IF判断语句,建议大家能够自己写一下,不想写或写不出也没关系,直接保存好上面的if语句Copy一下直接用就行了(修改一下单元格的序号就可以了)。

最后,如下图:

当然,我们还可以在用户层级的表头上加上“筛选”功能,可以直接搜索到我们需要的那些用户。大家也可以通过不同的颜色来区分不同的用户层级,这个就自由发挥拉。

好了,到这里,我们就已经通过用一张Excel表,完成了一次用户分层的全过程。 这张表最后的效果是,就像一个程序一样,我们任意输入三个RFM数字,表格将自动会跳出这个用户的层级。 大家保存好这张excel表,以后用起来套一下就可以了,效率是相当快的。大家可以尝试自己从头做一遍,若有需要的话可在留言区留下邮箱,我会发送给大家。

完成后上面六步之后,我们已经得到了完成用户分层之后的所有用户记录,这时我们需要做成图表的形式,开个会、做个汇报啥的,如下图:

回到我们上面说的,做用户分层的目的是为了有的放矢的制定出更精准、更有针对性的运营策略。所以,我们最终我们还是回到制定运营策略上来。我们的例子可参考下图:

再接下来要如何具体实施和执行,就不在本篇文章的范畴里了。

用户分层是运营过程中非常重要的一个环节,快速的进行用户分层也是我们必备的一个方法。我们把用户分的层,其实用户本身是不知道的。如果我们分一个层级让用户知道,不仅知道而且还非常喜欢,以此来不断引导用户进行自我层级的上升。

如何对用户进行等级分层,我们需要了解一个最常用的客户分类模型,那就是RFM模型。

RFM模型是在客户关系管理(CRM)分析模式中最受关注和应用的模型之一。它主要通过最近一次消费(recency)、消费频率(frequency)、消费金额(monetary)这三个维度的用户行为来对用户进行分层。RFM分别是这三个英文单词的首字母缩写。通过这一模型,企业可以动态地掌握用户对企业的长期价值,甚至预测客户的终身价值。

R(recency)指最近的消费时间。最近一次消费时间越近,说明这个用户近期是活跃的,对企业是有印象的。最近一次消费距当下时间越久,就越说明这个用户可能沉睡或流失了,需要企业通过客户关怀、营销活动去触达他,想办法将他再次激活,尽量挽回这个用户。

F(frequency)指消费频率。消费频率越高,消费也越活跃,代表用户对企业或品牌越认可,对企业贡献的销售价值越大。反之,消费频率低,甚至用户只来了一次后就再也没来,说明用户不活跃,相应的贡献价值也就少了。这时候企业就需要进行反思,他到底是不是企业的真正目标用户,是不是“薅羊毛”的用户,又或者是不是企业的产品和服务有问题,伤害到了他。总之,企业需要针对消费频率这一数据进行分析研究,找到原因,并想办法解决。

M(monetary)指一段时间内的消费金额。消费金额高,既说明用户对企业产品的需求大,也能反映用户的消费能力,同时还说明对企业和品牌的认可。在一段时间内,消费金额跟消费频率呈正相关,消费频率越高,累计的消费金额也会越高。

企业通过这三个维度合理评估用户的长期价值,把用户分为不同的等级,并对不同等级的用户投入不同的资源和时间来维护,这样就能让公司的资源效果实现最大化。

过去,互联网没有如此发达,传统企业没有实现数字化,企业很难抓取用户的实时数据,没办法实时掌握用户动态、群体画像,很难做精细化运营管理。而现在,无论是投广告、做活动,还是依靠微信、社群、小程序、App,都能实时获得大量数据,并且有了成熟的CRM软件之后,企业能够轻松地对用户消费数据进行分析,进而做出正确的决策。

在实际应用中,我们可以将RFM这三个维度,每个维度一分为二,大写字母代表高,小写字母代表低。这样一来就得到8组用户分类。

重要价值客户:最近消费时间近、消费频次和消费金额都很高,他们是企业的VIP客户。

重要发展客户:最近消费时间较近、消费金额高,但频次不高,忠诚度不高。他们是很有消费潜力的用户,需要重点发展。

重要保持客户:最近一次消费时间较远,但曾经一段时间内消费频次和金额都很高,说明他过去是个忠诚客户,企业需要主动和他联系,尝试激活。

重要挽留客户:最近消费时间较远、消费频次不高,但消费金额高,这些可能是将要流失或者已经流失的用户,企业应当采取挽留措施。

后面的一般价值客户、一般发展客户、一般保持客户、一般挽留客户相比前面四组的重要性会低一些。在实际成交客户中,如果对这8组客户维度进行简化分类,我们可以把他们分为A、B、C三个等级。这样,企业员工在维护时会更好地理解、 *** 作。

总而言之,企业在人格上对用户要一视同仁,尊重用户,友善相待,但是在商业服务上则要区别对待。企业不要试图给所有用户一样的服务,而是要将更高级的服务提供给那些更认可企业、能带来更高价值的用户。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/12050035.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-20
下一篇 2023-05-20

发表评论

登录后才能评论

评论列表(0条)

保存