有限元分析步骤介绍如下:
第一步:问题及求解域定义:根据实际问题近似确定求解域的物理性质和几何区域。
第二步:求解域离散化:将求解域近似为具有不同有限大小和形状且彼此相连的有限个单元组成的离散域,习惯上称为有限元网络划分。显然单元越小(网格越细)则离散域的近似程度越好,计算结果也越精确,但计算量及误差都将增大,因此求解域的离散化是有限元法的核心技术之一。
第三步:确定状态变量及控制方法:一个具体的物理问题通常可以用一组包含问题状态变量边界条件的微分方程式表示,为适合有限元求解,通常将微分方程化为等价的泛函形式。
第四步:单元推导:对单元构造一个适合的近似解,即推导有限单元的列式,其中包括选择合理的单元坐标系,建立单元试函数,以某种方法给出单元各状态变量的离散关系,从而形成单元矩阵(结构力学中称刚度阵或柔度阵)。
为保证问题求解的收敛性,单元推导有许多原则要遵循。 对工程应用而言,重要的是应注意每一种单元的解题性能与约束。例如,单元形状应以规则为好,畸形时不仅精度低,而且有缺秩的危险,将导致无法求解。
第五步:总装求解:将单元总装形成离散域的总矩阵方程(联合方程组),反映对近似求解域的离散域的要求,即单元函数的连续性要满足一定的连续条件。总装是在相邻单元结点进行,状态变量及其导数(可能的话)连续性建立在结点处。
第六步:联立方程组求解和结果解释:有限元法最终导致联立方程组。联立方程组的求解可用直接法、迭代法和随机法。求解结果是单元结点处状态变量的近似值。对于计算结果的质量,将通过与设计准则提供的允许值比较来评价并确定是否需要重复计算。
简言之,有限元分析可分成三个阶段,前置处理、计算求解和后置处理。前置处理是建立有限元模型,完成单元网格划分;后置处理则是采集处理分析结果,使用户能简便提取信息,了解计算结果。
CATIA的有限元分析的网格是程序自动划分的,直接将零件赋予好材料后进入:Generative Structural Analysis。当然前提是这个零件是由CATIA生成的,它自己划分的网格还是不错的,如果对网格不满意的话也可以自己画,就用Advan什么的那个面版,就是分析上面那个,具体怎样画,在网上找下教程吧。(1)流体分析建议网格划分使用ICEMCFD,画出的网格质量高,能够很好满足workbench中Fluent流体分析的要求,但是比较难
(2)汽车行业多用HyperMesh划分网格,进行结构、应力、应变分析,有较大的应用范围
(3)一般的结构分析建议使用Gambit进行网格划分。
总结:
有限元网格划分,前处理要根据模型分析要求选择合适的划分网格的软件,网格也并不是划的越密越好,满足分析要求即可。
过于密集就会使得计算时间过长,过于稀疏无法满足分析要求。
以上即是我个人心得,希望对你有所帮助。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)