怎样在视频上用标识跟随人

怎样在视频上用标识跟随人,第1张

在视频中设置跟随标识的方法如下:

1、首先进入AE软件,打开需要设置跟随标识的视频素材。

2、在空白处右键点击“新建”,再点击“空对象”。

3、选择新建的空对象,在右侧界面中选择“跟踪运动”。

4、调整视频中跟踪点的位置,锁定在你要标识跟随的物体或人物上。

5、调整好位置后点击右侧一个向右指向的三角形箭头。

6、等待自动跟踪结束后,点击“编辑目标”。

7、选择新建好的空对象,点击“确定”。

8、点击d出页面中的“应用”,选择“X”和“Y”后,点击“确定”即可。

在这篇文章中,我们将介绍如何使用通过 MultiTracker 类实现的 OpenCV 的多对象跟踪 API。我们将共享C++ 和 Python 代码。

大多数计算机视觉和机器学习的初学者都学习对象检测。如果您是初学者,您可能会想为什么我们需要对象跟踪。我们不能只检测每一帧中的对象吗?

让我们来探究一下跟踪是有用的几个原因。

首先,当在视频帧中检测到多个对象(例如人)时,跟踪有助于跨帧建立对象的身份。

其次,在某些情况下,对象检测可能会失败,但仍可能跟踪对象,因为跟踪考虑了对象在前一帧中的位置和外观。

第三,一些跟踪算法非常快,因为它们做的是局部搜索,而不是全局搜索。因此,我们可以通过每n帧进行目标检测,并在中间帧中跟踪目标,从而为我们的系统获得很高的帧率。

那么,为什么不在第一次检测后无限期地跟踪对象呢?跟踪算法有时可能会丢失它正在跟踪的对象。例如,当对象的运动太大时,跟踪算法可能跟不上。许多现实世界的应用程序同时使用检测和跟踪。

在本教程中,我们只关注跟踪部分。我们想要跟踪的对象将通过拖动它们周围的包围框来指定。

OpenCV 中的 MultiTracker 类提供了多目标跟踪的实现。它是一个简单的实现,因为它独立处理跟踪对象,而不对跟踪对象进行任何优化。

让我们逐步查看代码,了解如何使用 OpenCV 的多目标跟踪 API。

2.1 第 1 步:创建单一对象跟踪器

多目标跟踪器只是单目标跟踪器的集合。我们首先定义一个函数,该函数接受一个跟踪器类型作为输入,并创建一个跟踪器对象。OpenCV有8种不同的跟踪器类型:BOOSTING, MIL, KCF,TLD, MEDIANFLOW, GOTURN, MOSSE, CSRT。

如果您想使用 GOTURN 跟踪器,请务必阅读这篇文章并下载 caffe 模型。

在下面的代码中,给定跟踪器类的名称,我们返回跟踪器对象。这将在稍后用于多目标跟踪器。

Python

C++

2.2 第 2 步:读取视频的第一帧

多目标跟踪器需要两个输入

给定这些信息,跟踪器在所有后续帧中跟踪这些指定对象的位置。 在下面的代码中,我们首先使用 VideoCapture 类加载视频并读取第一帧。这将在稍后用于初始化 MultiTracker。

Python

C++

2.3 第 3 步:在第一帧中定位对象

接下来,我们需要在第一帧中定位我们想要跟踪的对象。该位置只是一个边界框。 OpenCV 提供了一个名为 selectROI 的函数,该函数会d出一个 GUI 来选择边界框(也称为感兴趣区域 (ROI))。 在 C++ 版本中,selectROI 允许您获取多个边界框,但在 Python 版本中,它只返回一个边界框。所以,在 Python 版本中,我们需要一个循环来获取多个边界框。 对于每个对象,我们还选择一种随机颜色来显示边界框。 代码如下所示。

Python

C++

getRandomColors 函数相当简单

2.4 第 3 步:初始化 MultiTracker

到目前为止,我们已经读取了第一帧并获得了对象周围的边界框。这就是我们初始化多目标跟踪器所需的所有信息。

我们首先创建一个 MultiTracker 对象,并向其中添加与边界框一样多的单个对象跟踪器。在此示例中,我们使用 CSRT 单对象跟踪器,但您可以通过将下面的 trackerType 变量更改为本文开头提到的 8 个跟踪器之一来尝试其他跟踪器类型。 CSRT 跟踪器不是最快的,但在我们尝试的许多情况下它产生了最好的结果。

您还可以使用包裹在同一个 MultiTracker 中的不同跟踪器,但当然,这没什么意义。

MultiTracker 类只是这些单个对象跟踪器的包装器。正如我们从上一篇文章中知道的那样,单个对象跟踪器是使用第一帧初始化的,并且边界框指示我们想要跟踪的对象的位置。 MultiTracker 将此信息传递给它在内部包装的单个对象跟踪器。

Python

C++

2.5 第 4 步:更新 MultiTracker 并显示结果

最后,我们的 MultiTracker 已准备就绪,我们可以在新帧中跟踪多个对象。我们使用 MultiTracker 类的 update 方法来定位新框架中的对象。每个跟踪对象的每个边界框都使用不同的颜色绘制。

Python

C++

C++

Python


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/12140411.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-21
下一篇 2023-05-21

发表评论

登录后才能评论

评论列表(0条)

保存