粒子群优化算法优化pid控制参数程序

粒子群优化算法优化pid控制参数程序,第1张

这个关键是建立评价指标,比如采用超调量、响应时间,或者ITAE等指标最大或者最小,这样就可以通过粒子群算法来不断修正PID参数,从而优化参数了。

一般来讲这样的优化只能离线,不能在线

PID算法是工业应用中最广泛算法之一,在闭环系统的控制中,可自动对控制系统进行准确且迅速的校正。PID算法已经有100多年历史,在四轴飞行器,平衡小车、汽车定速巡航、温度控制器等场景均有应用。

之前做过循迹车项目,简单循迹摇摆幅度较大,效果如下所示:

PID算法优化后,循迹稳定性能较大提升,效果如下所示:

PID算法:就是“比例(proportional)、积分(integral)、微分(derivative)”,是一种常见的“保持稳定”控制算法。

常规的模拟PID控制系统原理框图如下所示:

因此可以得出e(t)和u(t)的关系:

其中:

Kp:比例增益,是调适参数;

Ki:积分增益,也是调适参数;

Kd:微分增益,也是调适参数;

e:误差=设定值(SP)- 回授值(PV);

t:目前时间。

数学公式可能比较枯燥,通过以下例子,了解PID算法的应用。

例如,使用控制器使一锅水的温度保持在50℃,小于50℃就让它加热,大于50度就断电不就行了?

没错,在要求不高的情况下,确实可以这么干,如果换一种说法,你就知道问题出在哪里了。

如果控制对象是一辆汽车呢?要是希望汽车的车速保持在50km/h不动,这种方法就存在问题了。

设想一下,假如汽车的定速巡航电脑在某一时间测到车速是45km/h,它立刻命令发动机:加速!

结果,发动机那边突然来了个100%全油门,嗡的一下汽车急加速到了60km/h,这时电脑又发出命令:刹车!结果乘客吐......

所以,在大多数场合中,用“开关量”来控制一个物理量就显得比较简单粗暴了,有时候是无法保持稳定的,因为单片机、传感器不是无限快的,采集、控制需要时间。

而且,控制对象具有惯性,比如将热水控制器拔掉,它的“余热”即热惯性可能还会使水温继续升高一小会。

此时就需要使用PID控制算法了。

接着咱再来详细了解PID控制算法的三个最基本的参数:Kp比例增益、Ki积分增益、Kd微分增益。

1、Kp比例增益

Kp比例控制考虑当前误差,误差值和一个正值的常数Kp(表示比例)相乘。需要控制的量,比如水温,有它现在的 当前值 ,也有我们期望的 目标值 。

当两者差距不大时,就让加热器“轻轻地”加热一下。

要是因为某些原因,温度降低了很多,就让加热器“稍稍用力”加热一下。

要是当前温度比目标温度低得多,就让加热器“开足马力”加热,尽快让水温到达目标附近。

这就是P的作用,跟开关控制方法相比,是不是“温文尔雅”了很多。

实际写程序时,就让偏差(目标减去当前)与调节装置的“调节力度”,建立一个一次函数的关系,就可以实现最基本的“比例”控制了~

Kp越大,调节作用越激进,Kp调小会让调节作用更保守。

若你正在制作一个平衡车,有了P的作用,你会发现,平衡车在平衡角度附近来回“狂抖”,比较难稳住。

2、Kd微分增益

Kd微分控制考虑将来误差,计算误差的一阶导,并和一个正值的常数Kd相乘。

有了P的作用,不难发现,只有P好像不能让平衡车站起来,水温也控制得晃晃悠悠,好像整个系统不是特别稳定,总是在“抖动”。

设想有一个d簧:现在在平衡位置上,拉它一下,然后松手,这时它会震荡起来,因为阻力很小,它可能会震荡很长时间,才会重新停在平衡位置。

请想象一下:要是把上图所示的系统浸没在水里,同样拉它一下 :这种情况下,重新停在平衡位置的时间就短得多。

此时需要一个控制作用,让被控制的物理量的“变化速度”趋于0,即类似于“阻尼”的作用。

因为,当比较接近目标时,P的控制作用就比较小了,越接近目标,P的作用越温柔,有很多内在的或者外部的因素,使控制量发生小范围的摆动。

D的作用就是让物理量的速度趋于0,只要什么时候,这个量具有了速度,D就向相反的方向用力,尽力刹住这个变化。

Kd参数越大,向速度相反方向刹车的力道就越强,如果是平衡小车,加上P和D两种控制作用,如果参数调节合适,它应该可以站起来了。

3、Ki积分增益

Ki积分控制考虑过去误差,将误差值过去一段时间和(误差和)乘以一个正值的常数Ki。

还是以热水为例,假如有个人把加热装置带到了非常冷的地方,开始烧水了,需要烧到50℃。

在P的作用下,水温慢慢升高,直到升高到45℃时,他发现了一个不好的事情:天气太冷,水散热的速度,和P控制的加热的速度相等了。

这可怎么办?

P兄这样想:我和目标已经很近了,只需要轻轻加热就可以了。

D兄这样想:加热和散热相等,温度没有波动,我好像不用调整什么。

于是,水温永远地停留在45℃,永远到不了50℃。

根据常识,我们知道,应该进一步增加加热的功率,可是增加多少该如何计算呢?

前辈科学家们想到的方法是真的巧妙,设置一个积分量,只要偏差存在,就不断地对偏差进行积分(累加),并反应在调节力度上。

这样一来,即使45℃和50℃相差不是太大,但是随着时间的推移,只要没达到目标温度,这个积分量就不断增加,系统就会慢慢意识到:还没有到达目标温度,该增加功率啦!

到了目标温度后,假设温度没有波动,积分值就不会再变动,这时,加热功率仍然等于散热功率,但是,温度是稳稳的50℃。

Ki的值越大,积分时乘的系数就越大,积分效果越明显,所以,I的作用就是,减小静态情况下的误差,让受控物理量尽可能接近目标值。

I在使用时还有个问题:需要设定积分限制,防止在刚开始加热时,就把积分量积得太大,难以控制。

PID算法的参数调试是指通过调整控制参数(比例增益、积分增益/时间、微分增益/时间) 让系统达到最佳的控制效果 。

调试中稳定性(不会有发散性的震荡)是首要条件,此外,不同系统有不同的行为,不同的应用其需求也不同,而且这些需求还可能会互相冲突。

PID算法只有三个参数,在原理上容易说明,但PID算法参数调试是一个困难的工作,因为要符合一些特别的判据,而且PID控制有其限制存在。

1、稳定性

若PID算法控制器的参数未挑选妥当,其控制器输出可能是不稳定的,也就是其输出发散,过程中可能有震荡,也可能没有震荡,且其输出只受饱和或是机械损坏等原因所限制。不稳定一般是因为过大增益造成,特别是针对延迟时间很长的系统。

2、最佳性能

PID控制器的最佳性能可能和针对过程变化或是设定值变化有关,也会随应用而不同。

两个基本的需求是调整能力(regulation,干扰拒绝,使系统维持在设定值)及命令追随 (设定值变化下,控制器输出追随设定值的反应速度)。有关命令追随的一些判据包括有上升时间及整定时间。有些应用可能因为安全考量,不允许输出超过设定值,也有些应用要求在到达设定值过程中的能量可以最小化。

3、各调试方法对比

4、调整PID参数对系统的影响

解决方案1: 直接用缉鼎光刮叱钙癸水含惊ifft()例如信号x y=fft(x)%对信号傅里叶变换到频域 z=ifft(y)%对信号y傅里叶反变换到时域, 解决方案2: 工具箱埃IFFT()函数


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/12203247.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-21
下一篇 2023-05-21

发表评论

登录后才能评论

评论列表(0条)

保存