API接口入门(二):API接口的签名验签和加解密原理

API接口入门(二):API接口的签名验签和加解密原理,第1张

本文目录:

想象一个场景:一位许久不见的好兄弟,突然在微信里面跟你说“兄弟,借我1万应急呗”,你会怎么反应?

我想大部分人马上的反应就是:是不是被盗号了?他是本人吗?

实际上这是我们日常生活中常见的通讯行为,系统间调用API和传输数据的过程无异于你和朋友间的微信沟通,所有处于开放环境的数据传输都是可以被截取,甚至被篡改的。因而数据传输存在着极大的危险,所以必须加密。

加密核心解决两个问题:

古代人写信通过邮差传信,路途遥远,他们为了避免重要的内容被发现,决定用密文来写信,比如我想表达“八百标兵上北坡”,我写成800north,并且收件人也知道怎么阅读这份信息,即使路上的人截取偷看了,也看不懂你们在说的什么意思。同时我在文末签上我的字迹,在盒子里放上我的信物(比如一片羽毛等等),这样收件人也就知道这份信是我寄出的了。

这被称为“对称性密码”,也就是加密的人用A方式加密,解密的人用A方式解密,有什么缺点呢?

如果你经常传输,这就很容易被发现了密码规律,比如我很快就知道你寄信都会带上一片羽毛,那我以后也可以搞一片羽毛来冒充你了。加上,如果我要给很多人寄信,我就要跟每个人告诉我的加密方式,说不准有一个卧底就把你的加密方式出卖了。

因为互联网传输的对接方数量和频率非常高,显然搞个对称性密码是不安全的。于是,基于对称性密码延伸出“非对称密码”的概念。

通俗的解释:A要给B发信息,B先把一个箱子给A,A收到之后把信放进箱子,然后上锁,上锁了之后A自己也打不开,取不出来了,因为钥匙在B的手里,这样即使路上被截取了,别人也打不开箱子看里面的信息,最后B就能安全地收到A发的信了,并且信息没有泄露。

现在我们以一个单向的A发信息给B的场景进行深入了解公私此散钥工作原理。

总结:

(1)签名会被任何人获取,但因为签名内容不涉及核心内容,被获取破解是OK的。

(2)重要内容只能接收方解密,任何人获取了都无法解密。

(3)接收者B只有验证签名者是A的信息,才会执行接下来的乱洞程序。阿猫阿狗发来的信息不予执行。

捣局者C可能的情况:

(1)他获取到这条信息是A发出的,但看不明白加密的内容。

(2)他可以也用接受者B的加密方法c向接收者B发信息,但他无法冒充发送者A的签名,所以B不会接受C的请求。

(2)公私钥的非对称加密+session key对称加密

上一小节解释的公私钥加密是标准和安全的,但因为这类非对称加密对系统运算的需求比较大,在保证安全的前提下,还是尽量希望提升程序响应的时森陪氏效。所以目前主流应用的另一种加密方式是公私钥的非对称加密+session key对称加密。

(1)当B向A发出临时有效的加密方法之后,通讯的过程变为了对称加密;

(2)这类加密方式的核心是时效性,必须在短时间内更新,否则固定的规律容易被获取破解。

捣局者C可能的情况:

(1)他获取到B发出的session key的加密文件,无法破解session key是什么。因为解密方法在A手上;

(2)通过各种手段,C破解出session key的加解密方法,但因为时效已到,session key更新,C徒劳无功;

(3)C在时效内破解出session key,但无法冒充A的签名。

以上是2种常见的加解密方式,每个开放平台会在概述中最开始介绍API调用的安全加解密方法,这是每个对接过程中必须的准备流程,如微信企业平台在概述中就已介绍利用第2种方法(企业微信命名为access_token)进行加解密传输。

以上就是API签名验签和加解密的基本原理,接下来我会继续更新API的请求方式等问题,同时以企业微信,微信开放平台等大型开放平台的业务解释各平台支持的现有功能。

综上,水平有限,如有纰漏,敬请指出。

作者:就是爱睡觉;已任职电商和金融业行业的产品岗位3年时间,目前业务以TO B业务为主,文章是用于记录自己在产品工作的思考和想法,希望有想法的小伙伴共同交流。

题图来自Unsplash,基于CC0协议

npm install  wxapp_rsa

var RSA = require('/wxapp_rsa.js')

// RSA加签

    var sign_rsa = new RSA.RSAKey()

//privateKey_pkcs1需要是-----BEGIN PRIVATE KEY-----开头的私钥

    sign_rsa = RSA.KEYUTIL.getKey(privateKey_pkcs1)

    console.log('签名RSA:')

    console.log(sign_rsa)

    var hashAlg = 'MD5withRSA'

    var hSig = sign_rsa.signString("12345678901234567890", hashAlg)

    hSig = RSA.hex2b64(hSig)// hex 转 b64

    console.log("签名结果:" + hSig)

    // RSA 验签

    var verify_rsa = new RSA.RSAKey()

    verify_rsa = RSA.KEYUTIL.getKey(publicKey_pkcs1)

    console.log('粗宏答验签RSA:')

    console.log(verify_rsa)

    hSig = RSA.b64tohex(hSig)

    var ver = verify_rsa.verifyString("12345678901234567890", hSig)

    console.log('验签结果:' + ver)

//  RSA加密 【加密字段长度不大绝岁于117】

    var encrypt_rsa = new RSA.RSAKey()

    encrypt_rsa = RSA.KEYUTIL.getKey(rsa_public_key)

    console.log('加密RSA:')

    console.log(encrypt_rsa)

    var encStr = encrypt_rsa.encrypt('1234567890')

    console.log(encStr)

    encStr = RSA.hex2b64(encStr)

    console.log("加密结果:" + encStr)

    // RSA 解密

    var decrypt_rsa = new RSA.RSAKey()

    decrypt_rsa = RSA.KEYUTIL.getKey(rsa_public_key_private)

    console.log('解密RSA:')

    console.log(decrypt_rsa)

    encStr = RSA.b64tohex(encStr)

 岩慧   var decStr = decrypt_rsa.decrypt(encStr)

    console.log("解密结果:" + decStr)

解决办法:设置--手机设置--应用程序--程序管理:“软件安装”--选择"全部",“在线证书检亮迟谨查”--选择"关"。

手机,全称为移动电话或无线电话,通旦亮常称为手机,原本只是一种通讯工具,早期又有“大哥大”的俗称,是可以在较广范围内使用的便携式电话终端,最早是由美国贝尔实验室在1958年制造的战地移动电话机发展而敬基来。

手机分为智能手机(Smartphone)和非智能手机(Featurephone),一般智能手机的性能比非智能手机要好,但是非智能手机比智能手机性能稳定,大多数非智能手机和智能手机使用英国ARM公司架构的CPU。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/12214669.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-21
下一篇 2023-05-21

发表评论

登录后才能评论

评论列表(0条)

保存