矩阵的分解是矩阵相关运算中的重要内容,MATLAB提供了用于矩阵分解运算的多种函数。本节将集中介绍MATLAB所提供的矩阵分解运算函数的功能及使用。
矩阵的三角分解又称高斯消去法分解,它的目的是将一个矩阵分解成一个下三角矩阵L和一个上三角矩阵U的乘积,即A=LU。MATLAB提供了专门的函数lu来计算矩阵的LU分解。该函数的调用格式如下乱侍:
其中,返回矩阵U为上三角阵,矩阵L为下三角阵或其变换形式,且满足LU=X。返回矩阵P为单位矩阵的行变换矩阵,满足LU=PX。
奇异值分解在矩阵分析中占有极其重要的作用。MATLAB提供了用于矩阵奇异值分解的函数svd,该函数是利用LINPACK程序库中的ZSVDC编制而成的。在计算的过程中假如经过75步QR分解仍得不到一个奇异值,那么系统会给出“不收敛”的提示。奇异值分解函数svd的几种调用格式如下:
其中,命令①返回向量s包含矩阵X分解所得到的全部奇异值向量。命令② 返回一个与X同大小的对角矩阵S和两个酉矩阵U与V,且满足= U S V'。命令③ 得到一个“有效大小”的分解,如果m×n维矩阵X中m>n则只计算出矩阵U的前n列,矩阵S的大小为n×n。
MATLAB提供了eig函数来对矩阵进行特征值分解,该函数的几种调用格式如下:
其中,①计算矩阵A的特征值d,返回结果以向量形式存放。②计算方阵A和B的广义特征值d,返回结果以向量形式存放。③计算矩阵A的特征值对角阵D和特征向量阵V,使AV=VD成立。④计算矩阵A的特征值对角阵D和特征向量阵V,使AV=VD成立。当矩阵A中有与截断误差数量级相差不远的值时,该指令可能更精确。'nobalance'起误差调节作用。⑤计算矩阵A和B的广义特征值向量阵V和广义特征值阵D,满足AV=BVD。最后一条命令⑥由flag指定算法计算矩阵A和B的特征值D和特征向量V。其中,flag的可能值为:'chol' 和'qz' 。当flag值为'chol'时表示对B使用Cholesky分解算法,其中A为对称Hermitian矩阵,B为正定阵。当flag值为'qz'时表示使用QZ算法,其中A、B为非对称或非Hermitian矩阵。
MATLAB提供了chol函数来对矩阵进行Cholesky分解,该函数的调用格式为:
函数调用格式①如果X为n阶对称正定矩阵,则存在一个实的非奇异上三角阵R,满足R'*R = X;若X非正定,则产生错误信息。②不产生任何错误信息,若X为正定阵,则笑盯p=0,R与上相同;若X非正定,则p为正整数,R是有序的上三角阵。
正交矩阵是指矩阵的列向量相互正交,且各个列向量的长度相等。QR分解就是将矩阵A分解成一个正交矩阵与一个上三角矩阵的乘积。MATLAB提供了用于矩阵QR分解的函数,表3.7中介绍用于矩阵QR分解的函数调用格式和功能。
表3.7矩阵QR分解
Schur分解将使用schur函数,该函数的调用格式为:
命令行①-③返回正交矩阵U和schur矩阵T,满足A = U T U'。其中,若A有复特征根,则flag='complex',否则flag='real'。
即使是实阵,在其特征值中也可能出现复数。碰陪和实际使用中常需要把这一对对共轭复数特征值转化为一个(2x2)的实数块。函数调用格式为:
MATLAB提供了gsvd函数对矩阵进行广义奇异值分解,其具体调用格式为:
其中,函数调用格式①返回酉矩阵U和V、一个普通方阵X、非负对角矩阵C和S,满足A = U C X',B = V S X',C' C + S' S = I (I为单位矩阵)。A和B的列数必须相同,行数可以不同。函数调用格式②和①基本相同,而③则返回广义奇异值sigma值。
MATLAB提供了qz函数对矩阵进行特征值问题的QZ分解,该函数的调用格式为:
其中函数调用格式①中A、B为方阵,返回结果AA和BB为上三角阵,Q、Z为正交矩阵或其列变换形式,V为特征向量阵,且满足Q A Z= AA 和Q B Z = BB。命令行②产生由flag决定的分解结果,flag取值为'complex'表示复数分解(默认);取值为'real'表示实数分解。
如果矩阵H的第一子对角线下元素都是0,则H为海森伯格(Hessenberg)矩阵。如果矩阵是对称矩阵,则它的海森伯格形式是对角三角阵。MATLAB可以通过相似变换将矩阵变换成这种形式,具体调用格式为:
以下是我的SVD高位矩阵去噪函数function
f=PVC(x,n)
[u,s,v]=svd(x)
for
i=1:n
t=max(s)
[z,ind]=min(t)
s(ind,ind)=0
end
f=u*s*v'
n指你要下降的秩数,x指原高维矩阵,降维我不会了让颂绝,我也才学1年不到,只能樱顷写个降秩坦姿的给你,不知道有没有帮助
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)