net = newff(PR,[S1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF)
其中:PR —— R维输入元粗闹乱素的R×2阶岩档最大最小值矩阵; Si —— 第i层神经元的个数,共N1层; TFi——第i层的转移函数,默认‘tansig’; BTF—— BP网络的训练函数,默认‘trainlm’ BLF—— BP权值/偏差学习函数,默认弯汪’learngdm’ PF ——性能函数,默认‘mse’;(误差)
e.g.
P = [0 1 2 3 4 5 6 7 8 9 10]T = [0 1 2 3 4 3 2 1 2 3 4]
net = newff([0 10],[5 1],{'tansig' 'purelin'})net.trainparam.show=50 %每次循环50次net.trainParam.epochs = 500 %最大循环500次
net.trainparam.goal=0.01 %期望目标误差最小值
net = train(net,P,T) %对网络进行反复训练
Y = sim(net,P)Figure % 打开另外一个图形窗口
plot(P,T,P,Y,'o')
VC源代码?你很局裂卖搞笑嘛源塌。。给你trainlm的m码
function [out1,out2] = trainlm(varargin)
%TRAINLM Levenberg-Marquardt backpropagation.
%
% <a href="matlab:doc trainlm">trainlm</a>is a network training function that updates weight and
% bias states according to Levenberg-Marquardt optimization.
%
% <a href="matlab:doc trainlm">trainlm</a>is often the fastest backpropagation algorithm in the toolbox,
% and is highly recommended as a first choice supervised algorithm,
% although it does require more memory than other algorithms.
%
% [NET,TR] = <a href="桐逗matlab:doc trainlm">trainlm</a>(NET,X,T) takes a network NET, input data X
% and target data T and returns the network after training it, and a
% a training record TR.
%
% [NET,TR] = <a href="matlab:doc trainlm">trainlm</a>(NET,X,T,Xi,Ai,EW) takes additional optional
% arguments suitable for training dynamic networks and training with
% error weights. Xi and Ai are the initial input and layer delays states
% respectively and EW defines error weights used to indicate
% the relative importance of each target value.
%
% Training occurs according to training parameters, with default values.
% Any or all of these can be overridden with parameter name/value argument
% pairs appended to the input argument list, or by appending a structure
% argument with fields having one or more of these names.
%show25 Epochs between displays
%showCommandLine 0 generate command line output
%showWindow 1 show training GUI
%epochs 100 Maximum number of epochs to train
%goal 0 Performance goal
%max_fail 5 Maximum validation failures
%min_grad 1e-10 Minimum performance gradient
%mu 0.001 Initial Mu
%mu_dec 0.1 Mu decrease factor
%mu_inc 10 Mu increase factor
%mu_max1e10 Maximum Mu
%time inf Maximum time to train in seconds
%
% To make this the default training function for a network, and view
% and/or change parameter settings, use these two properties:
%
%net.<a href="matlab:doc nnproperty.net_trainFcn">trainFcn</a>= 'trainlm'
%net.<a href="matlab:doc nnproperty.net_trainParam">trainParam</a>
%
% See also trainscg, feedforwardnet, narxnet.
% Mark Beale, 11-31-97, ODJ 11/20/98
% Updated by Orlando De Jes鷖, Martin Hagan, Dynamic Training 7-20-05
% Copyright 1992-2010 The MathWorks, Inc.
% $Revision: 1.1.6.11.2.2 $ $Date: 2010/07/23 15:40:16 $
%% =======================================================
% BOILERPLATE_START
% This code is the same for all Training Functions.
persistent INFO
if isempty(INFO), INFO = get_infoend
nnassert.minargs(nargin,1)
in1 = varargin{1}
if ischar(in1)
switch (in1)
case 'info'
out1 = INFO
case 'check_param'
nnassert.minargs(nargin,2)
param = varargin{2}
err = nntest.param(INFO.parameters,param)
if isempty(err)
err = check_param(param)
end
if nargout >0
out1 = err
elseif ~isempty(err)
nnerr.throw('Type',err)
end
otherwise,
try
out1 = eval(['INFO.' in1])
catch me, nnerr.throw(['Unrecognized first argument: ''' in1 ''''])
end
end
return
end
nnassert.minargs(nargin,2)
net = nn.hints(nntype.network('format',in1,'NET'))
oldTrainFcn = net.trainFcn
oldTrainParam = net.trainParam
if ~strcmp(net.trainFcn,mfilename)
net.trainFcn = mfilename
net.trainParam = INFO.defaultParam
end
[args,param] = nnparam.extract_param(varargin(2:end),net.trainParam)
err = nntest.param(INFO.parameters,param)
if ~isempty(err), nnerr.throw(nnerr.value(err,'NET.trainParam'))end
if INFO.isSupervised &&isempty(net.performFcn) % TODO - fill in MSE
nnerr.throw('Training function is supervised but NET.performFcn is undefined.')
end
if INFO.usesGradient &&isempty(net.derivFcn) % TODO - fill in
nnerr.throw('Training function uses derivatives but NET.derivFcn is undefined.')
end
if net.hint.zeroDelay, nnerr.throw('NET contains a zero-delay loop.')end
[X,T,Xi,Ai,EW] = nnmisc.defaults(args,{},{},{},{},{1})
X = nntype.data('format',X,'Inputs X')
T = nntype.data('format',T,'Targets T')
Xi = nntype.data('format',Xi,'Input states Xi')
Ai = nntype.data('format',Ai,'Layer states Ai')
EW = nntype.nndata_pos('format',EW,'Error weights EW')
% Prepare Data
[net,data,tr,~,err] = nntraining.setup(net,mfilename,X,Xi,Ai,T,EW)
if ~isempty(err), nnerr.throw('Args',err), end
% Train
net = struct(net)
fcns = nn.subfcns(net)
[net,tr] = train_network(net,tr,data,fcns,param)
tr = nntraining.tr_clip(tr)
if isfield(tr,'perf')
tr.best_perf = tr.perf(tr.best_epoch+1)
end
if isfield(tr,'vperf')
tr.best_vperf = tr.vperf(tr.best_epoch+1)
end
if isfield(tr,'tperf')
tr.best_tperf = tr.tperf(tr.best_epoch+1)
end
net.trainFcn = oldTrainFcn
net.trainParam = oldTrainParam
out1 = network(net)
out2 = tr
end
% BOILERPLATE_END
%% =======================================================
% TODO - MU =>MU_START
% TODO - alternate parameter names (i.e. MU for MU_START)
function info = get_info()
info = nnfcnTraining(mfilename,'Levenberg-Marquardt',7.0,true,true,...
[ ...
nnetParamInfo('showWindow','Show Training Window Feedback','nntype.bool_scalar',true,...
'Display training window during training.'), ...
nnetParamInfo('showCommandLine','Show Command Line Feedback','nntype.bool_scalar',false,...
'Generate command line output during training.'), ...
nnetParamInfo('show','Command Line Frequency','nntype.strict_pos_int_inf_scalar',25,...
'Frequency to update command line.'), ...
...
nnetParamInfo('epochs','Maximum Epochs','nntype.pos_int_scalar',1000,...
'Maximum number of training iterations before training is stopped.'), ...
nnetParamInfo('time','Maximum Training Time','nntype.pos_inf_scalar',inf,...
'Maximum time in seconds before training is stopped.'), ...
...
nnetParamInfo('goal','Performance Goal','nntype.pos_scalar',0,...
'Performance goal.'), ...
nnetParamInfo('min_grad','Minimum Gradient','nntype.pos_scalar',1e-5,...
'Minimum performance gradient before training is stopped.'), ...
nnetParamInfo('max_fail','Maximum Validation Checks','nntype.strict_pos_int_scalar',6,...
'Maximum number of validation checks before training is stopped.'), ...
...
nnetParamInfo('mu','Mu','nntype.pos_scalar',0.001,...
'Mu.'), ...
nnetParamInfo('mu_dec','Mu Decrease Ratio','nntype.real_0_to_1',0.1,...
'Ratio to decrease mu.'), ...
nnetParamInfo('mu_inc','Mu Increase Ratio','nntype.over1',10,...
'Ratio to increase mu.'), ...
nnetParamInfo('mu_max','Maximum mu','nntype.strict_pos_scalar',1e10,...
'Maximum mu before training is stopped.'), ...
], ...
[ ...
nntraining.state_info('gradient','Gradient','continuous','log') ...
nntraining.state_info('mu','Mu','continuous','log') ...
nntraining.state_info('val_fail','Validation Checks','discrete','linear') ...
])
end
function err = check_param(param)
err = ''
end
function [net,tr] = train_network(net,tr,data,fcns,param)
% Checks
if isempty(net.performFcn)
warning('nnet:trainlm:Performance',nnwarning.empty_performfcn_corrected)
net.performFcn = 'mse'
net.performParam = mse('defaultParam')
tr.performFcn = net.performFcn
tr.performParam = net.performParam
end
if isempty(strmatch(net.performFcn,{'sse','mse'},'exact'))
warning('nnet:trainlm:Performance',nnwarning.nonjacobian_performfcn_replaced)
net.performFcn = 'mse'
net.performParam = mse('defaultParam')
tr.performFcn = net.performFcn
tr.performParam = net.performParam
end
% Initialize
startTime = clock
original_net = net
[perf,vperf,tperf,je,jj,gradient] = nntraining.perfs_jejj(net,data,fcns)
[best,val_fail] = nntraining.validation_start(net,perf,vperf)
WB = getwb(net)
lengthWB = length(WB)
ii = sparse(1:lengthWB,1:lengthWB,ones(1,lengthWB))
mu = param.mu
% Training Record
tr.best_epoch = 0
tr.goal = param.goal
tr.states = {'epoch','time','perf','vperf','tperf','mu','gradient','val_fail'}
% Status
status = ...
[ ...
nntraining.status('Epoch','iterations','linear','discrete',0,param.epochs,0), ...
nntraining.status('Time','seconds','linear','discrete',0,param.time,0), ...
nntraining.status('Performance','','log','continuous',perf,param.goal,perf) ...
nntraining.status('Gradient','','log','continuous',gradient,param.min_grad,gradient) ...
nntraining.status('Mu','','log','continuous',mu,param.mu_max,mu) ...
nntraining.status('Validation Checks','','linear','discrete',0,param.max_fail,0) ...
]
nn_train_feedback('start',net,status)
% Train
for epoch = 0:param.epochs
% Stopping Criteria
current_time = etime(clock,startTime)
[userStop,userCancel] = nntraintool('check')
if userStop, tr.stop = 'User stop.'net = best.net
elseif userCancel, tr.stop = 'User cancel.'net = original_net
elseif (perf <= param.goal), tr.stop = 'Performance goal met.'net = best.net
elseif (epoch == param.epochs), tr.stop = 'Maximum epoch reached.'net = best.net
elseif (current_time >= param.time), tr.stop = 'Maximum time elapsed.'net = best.net
elseif (gradient <= param.min_grad), tr.stop = 'Minimum gradient reached.'net = best.net
elseif (mu >= param.mu_max), tr.stop = 'Maximum MU reached.'net = best.net
elseif (val_fail >= param.max_fail), tr.stop = 'Validation stop.'net = best.net
end
% Feedback
tr = nntraining.tr_update(tr,[epoch current_time perf vperf tperf mu gradient val_fail])
nn_train_feedback('update',net,status,tr,data, ...
[epoch,current_time,best.perf,gradient,mu,val_fail])
% Stop
if ~isempty(tr.stop), break, end
% Levenberg Marquardt
while (mu <= param.mu_max)
% CHECK FOR SINGULAR MATRIX
[msgstr,msgid] = lastwarn
lastwarn('MATLAB:nothing','MATLAB:nothing')
warnstate = warning('off','all')
dWB = -(jj+ii*mu) \ je
[~,msgid1] = lastwarn
flag_inv = isequal(msgid1,'MATLAB:nothing')
if flag_inv, lastwarn(msgstr,msgid)end
warning(warnstate)
WB2 = WB + dWB
net2 = setwb(net,WB2)
perf2 = nntraining.train_perf(net2,data,fcns)
% TODO - possible speed enhancement
% - retain intermediate variables for Memory Reduction = 1
if (perf2 <perf) &&flag_inv
WB = WB2net = net2
mu = max(mu*param.mu_dec,1e-20)
break
end
mu = mu * param.mu_inc
end
% Validation
[perf,vperf,tperf,je,jj,gradient] = nntraining.perfs_jejj(net,data,fcns)
[best,tr,val_fail] = nntraining.validation(best,tr,val_fail,net,perf,vperf,epoch)
end
end
function [f1,f2]=forcast_neural(x1,y1,x2)% 此函数用神经网络进行预测
% x1: 训练郑掘输入
% y1: 训练输出
% x2: 测试输入
% 将输入输出数据进樱丛伏行归一化处理;
x1=x1'y1=y1'x2=x2'
warning('off')
[p,minp,maxp,t,mint,maxt]=premnmx(x1,y1)
x22=tramnmx(x2,minp,maxp)
% pr确定各输入变量的最大最小值;脊携[8,r]分别表示各层神经元的个数,8代表因层,r代表输出层;{}中定义传递函数的类型
netw=newff(minmax(p),[8,1],{'tansig','purelin'},'trainlm')
%将网络netw赋给net
net=netw
%定义网络训练误差
err=0.001
net.trainParam.goal=err
%定义学习效率,学习效率非常重要:过大,调整步伐也大,影响训练效果;太小,算法收敛的时间就会增加
net.trainParam.lr=0.3
%定义最大训练步数
net.trainParam.epochs=2000
%定义显示的间隔
net.trainParam.show=50
%训练神经网络
netw=train(net,p,t)
%对训练好的样本进行检验
s1=sim(netw,p) %对网络进行仿真检验,得到网络的输出
%%进行预测
%输出
s2=sim(netw,x22)
%将归一化的数据转换为原始数据
[f1] = postmnmx(s1,mint,maxt)
[f2] = postmnmx(s2,mint,maxt)
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)