KNN-分类算法

KNN-分类算法,第1张

KNN,K-NearestNeighbor,即K个最近的邻居的意思。对于一个输入样本,用特征上最接近它的K个临近值大多数属于的标签来对它进行分类。KNN是最简单的机器学习算法之一,可以用于分类和回归,是一种监督学习算法。

具体实现过程如下:

①准备数据,对数据进行预处理

在已经分好类的情况下,我们需要对没有分类的物品进行分类 。

②计算测试样本点(也就是待分类点)到其他每个样本点的距离。

其实就是计算(x1,y1)和(x2,y2)的距离。拓展到多维空间,则公式变成这晌岩样:

k值是KNN算法的一个参数,K的含义即参考”邻居“标签值的个数。

如含陪果当K的取值过小时,一旦有噪声得成分存在们将会对预测产生比较大影响,例如取K值为1时,一旦最近的一个点是噪声,那么就会出现偏差,K值的减小就意味着整体模型变得复杂,容易发生过拟合;

如果K的值取的过大时,就相当于用较大邻域中的训练实例进行预测,学习的近似误差会增大。这时与输入目标点较远实例也会对预测起作用,使预测发生错误。K值的增大就意味着整体的模型变得简单;

如果K==N的时候,那么就是取全部的实例,即为取实例中某分类下最多的点,就对预测没有什么实际的意义了

在划分好数据集后,我们可以通过交叉验证法来得到宴老御最佳的K值

优点:

1.无数据输入假定,在分类完的情况下进行测试

2.预测精度高

3.对异常值不敏感

缺点:

1.时间复杂度和空间复杂度高,计算到每一个点的距离,计算量较大

2.当样本不平衡的时候,比如一个类的样本容量大,另一个类的样本容量很小,对于测试识别的样本来说,投票结果更容易靠近样本容量大的类,从而导致分类错误

1、K最近邻(k-NearestNeighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。

2、KNN算法中,所选择的邻居都是已经正确分类的对象。该方法在定类决策上只依据最邻近的一个或者几个样本的类别来孝含决定待分样本所属的类别。 KNN方法虽简大然从原理上也依赖于极限定理,但在类别决策时,只与极少量的相邻样本有关。由于KNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,KNN方法较其他方法更为适合。

3、KNN算巧咐笑法不仅可以用于分类,还可以用于回归。通过找出一个样本的k个最近邻居,将这些邻居的属性的平均值赋给该样本,就可以得到该样本的属性。更有用的方法是将不同距离的邻居对该样本产生的影响给予不同的权值(weight),如权值与距离成正比。

简言之,就是将未标记的案例归类为与它们最近相似的、带有标记的案例所在的类 。

原理及举例

工作原理:我们知道样本集中每一个数据与所属分类的对应关系,输入没有标签的新数据后,将新数据与训练集的数据对应特征进行比较,找出“距离”最近的k(通常k<20)数据,选择这k个数据中出现最多的分类作为新数据的分类。

算法描述

1、计算已知数据集中的点与当前点的距离

2、按距离递增次序排序

3、选取与当前数据点距离最近的K个点

4、确定前K个点所在类别出现的频率

5、返回频率最高的类别作为当前类别的预测

距离计算方法有"euclidean"(欧氏距离),”minkowski”(明科夫斯基距离), "maximum"(切比雪夫距离), "manhattan"(绝对值距离),"canberra"(兰式距离), 或 "minkowski"(马氏距离)等

Usage

knn(train, test, cl, k = 1, l = 0, prob =FALSE, use.all = TRUE)

Arguments

train

matrix or data frame of training set cases.

test

matrix or data frame of test set cases. A vector will  be interpreted as a row vector for a single case.

cl

factor of true classifications of training set

k

number of neighbours considered.

l

minimum vote for definite decision, otherwisedoubt. (More precisely, less thank-ldissenting votes are allowed, even

ifkis  increased by ties.)

prob

If this is true, the proportion of the votes for the

winning class are returned as attributeprob.

use.all

controls handling of ties. If true, all distances equal

to thekth largest are

included. If false, a random selection of distances equal to thekth is chosen to use exactlykneighbours.

kknn(formula = formula(train), train, test, na.action = na.omit(), k = 7, distance = 2, kernel = "optimal", ykernel = NULL, scale=TRUE, contrasts = c('unordered' = "contr.dummy", ordered = "contr.ordinal"))

参数:

formula                            A formula object.

train                                 Matrix or data frame of training set cases.

test                                   Matrix or data frame of test set cases.

na.action                         A function which indicates what should happen when the data contain ’NA’s.

k                                       Number of neighbors considered.

distance                          Parameter of Minkowski distance.

kernel                              Kernel to use. Possible choices are "rectangular" (which is standard unweighted knn), "triangular", "epanechnikov" (or beta(2,2)), "biweight" (or beta(3,3)), "triweight" (or beta(4,4)), "cos", "inv", "gaussian", "rank" and "optimal".

ykernel                            Window width of an y-kernel, especially for prediction of ordinal classes.

scale                                Logical, scale variable to have equal sd.

contrasts                         A vector containing the ’unordered’ and ’ordered’ contrasts to use

kknn的返回值如下:

fitted.values              Vector of predictions.

CL                              Matrix of classes of the k nearest neighbors.

W                                Matrix of weights of the k nearest neighbors.

D                                 Matrix of distances of the k nearest neighbors.

C                                 Matrix of indices of the k nearest neighbors.

prob                            Matrix of predicted class probabilities.

response                   Type of response variable, one of continuous, nominal or ordinal.

distance                     Parameter of Minkowski distance.

call                              The matched call.

terms                          The ’terms’ object used.

iris%>%ggvis(~Length,~Sepal.Width,fill=~Species)

library(kknn)

data(iris)

dim(iris)

m<-(dim(iris))[1]

val<-sample(1:m,size=round(m/3),replace=FALSE,prob=rep(1/m,m))

建立训练数据集

data.train<-iris[-val,]

建立测试数据集

data.test<-iris[val,]

调用kknn  之前首先定义公式

formula : Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width

iris.kknn<-kknn(Species~.,iris.train,iris.test,distance=1,kernel="triangular")

summary(iris.kknn)

# 获取fitted.values

fit <- fitted(iris.kknn)

# 建立表格检验判类准确性

table(iris.valid$Species, fit)

# 绘画散点图,k-nearest neighbor用红色高亮显示

pcol <- as.character(as.numeric(iris.valid$Species))

pairs(iris.valid[1:4], pch = pcol, col = c("green3", "red")[(iris.valid$Species != fit)+1]

二、R语言knn算法

install.packages("class")

library(class)

对于新的测试样例基于距离相似度的法则,确定其K个最近的邻居,在K个邻居中少数服从多数

确定新测试样例的类别

1、获得数据

2、理解数据

对数据进行探索性分析,散点图

如上例

3、确定问题类型,分类数据分析

4、机器学习算法knn

5、数据处理,归一化数据处理

normalize <- function(x){

num <- x - min(x)

denom <- max(x) - min(x)

return(num/denom)

}

iris_norm <-as.data.frame(lapply(iris[,1:4], normalize))

summary(iris_norm)

6、训练集与测试集选取

一般按照3:1的比例选取

方法一、set.seed(1234)

ind <- sample(2,nrow(iris), replace=TRUE, prob=c(0.67, 0.33))

iris_train <-iris[ind==1, 1:4]

iris_test <-iris[ind==2, 1:4]

train_label <-iris[ind==1, 5]

test_label <-iris[ind==2, 5]

方法二、

ind<-sample(1:150,50)

iris_train<-iris[-ind,]

iris_test<-iris[ind,1:4]

iris_train<-iris[-ind,1:4]

train_label<-iris[-ind,5]

test_label<-iris[ind,5]

7、构建KNN模型

iris_pred<-knn(train=iris_train,test=iris_test,cl=train_label,k=3)

8、模型评价

交叉列联表法

table(test_label,iris_pred)

实例二

数据集

http://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/wdbc.data

导入数据

dir <-'http://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/wdbc.data'wdbc.data <-read.csv(dir,header = F)

names(wdbc.data) <- c('ID','Diagnosis','radius_mean','texture_mean','perimeter_mean','area_mean','smoothness_mean','compactness_mean','concavity_mean','concave points_mean','symmetry_mean','fractal dimension_mean','radius_sd','texture_sd','perimeter_sd','area_sd','smoothness_sd','compactness_sd','concavity_sd','concave points_sd','symmetry_sd','fractal dimension_sd','radius_max_mean','texture_max_mean','perimeter_max_mean','area_max_mean','smoothness_max_mean','compactness_max_mean','concavity_max_mean','concave points_max_mean','symmetry_max_mean','fractal dimension_max_mean')

table(wdbc.data$Diagnosis)## M = malignant, B = benign

wdbc.data$Diagnosis <- factor(wdbc.data$Diagnosis,levels =c('B','M'),labels = c(B ='benign',M ='malignant'))

如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。该方法在定类决策上只依据最邻近数唤的一个或者几个样本的类别来决定待分样本所属的类别。 看下面这幅图:

KNN的算法过程是是这样的: 从上图中我们可以看到,图中的数据集是良好的数据,即都打好了label,一类是蓝色的正方形,一类是红色的三角形,那个绿色的圆形是我们待分类的数据。 如果K=3,那么离绿色点最近的有2个红色三角形和1个蓝色的正方形,这3个点投票,于是绿色的这个待分类点属于红色的三角形 如果K=5,那么离绿色点最近的有2个红色三角形和3个蓝色的正方形,这5个点投票,于是绿色的这个待分类点属于蓝色的正方形 我们可以看到,KNN本质是基于一种数据统计的方法!其实很多机器学习算法也是基于数据统计的。 KNN是一种memory-based learning,也叫instance-based learning,属于lazy learning。即它没有明显的前期训练过程,而是程序开始运行时,把数据集加载到内存后,不需要进行训练,就可以开始分类了。 具体是每次来一个未知的样本点,就在附近找K个最近的点进行投票。纯郑

KNN算法的实现就是取决于,未知样本和训练样本的“距离”。我们计算“距离”可以利用欧式距离算法:

求出K个最相近的元组后,用这些元组对应的数值的平均值作为最终结果。

可以从K=1开始,逐步增加,用检验数据来分析正确率,从而选择最优K。这个结果要均衡考虑正确率与计算量,比如K=3时,正确率为90%,而K=10时,正确率为91%,则需要考虑计算量换来的1%提升是否合算了。

(1)如果可能的话先对样本数据进行排序,从而知道只需要与哪些数据进行比较。但对于高维数据,这几乎是不可行的。

(2)将样本数据划分为多个子集合,待分类数据只需要与其中的一个或者多个子集合进行比较。比如属性是经纬度,距离是2个经纬度点之间的距离,则可以将样本根据经纬度的整数部分将各个样本分到不同的子集合去,待分类元组只需要跟与自己整数部分相同的子集合进行比较即可,当子集合内的样本数据不足K时,再和邻近的集合进行比较。

(1)理论成熟,思想简单,既可以用来做分类又可以做回归

(2)可以用于非线性分类

(3)训练时间复杂度比支持向量机之类的算法低

(4)和朴素贝叶斯之类的算法比,对数据没有假设,准确度高,对异常点不敏感

(5)由于KNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属的类别,因此对于类域的交叉或重叠较多的待分类样本集来说,KNN方法较其他方法更为适合

(6)该算法比较适用于样本容量比较大的类域的自动分类,而那些样本容量比较小的类域采用这种算法比较容易产生误分类情况

(1)计算量大,尤其是特征数非常多的时候

(2)样本不平衡的时候,对稀有类别的预测准确率低

(3)KD树,球做毕颂树之类的模型建立需要大量的内存

(4)是慵懒散学习方法,基本上不学习,导致预测时速度比起逻辑回归之类的算法慢

(5)相比决策树模型,KNN模型的可解释性不强

注:图片来源于:https://blog.csdn.net/wstz_5461/article/details/78018099


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/12273292.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-24
下一篇 2023-05-24

发表评论

登录后才能评论

评论列表(0条)

保存