EFI是可扩展固件接口(Extensible Firmware Interface)的缩写,英特尔公司推出的一种在未来的类PC的电脑系统中替代BIOS的升级方案。
EFI的组成,一般认为EFI由以下几个部分组成,Pre-EFI初始化模块,EFI驱动执行环境,EFI驱动程序,兼容性支持模块(CSM),EFI高层应用,GUID 磁盘分区。
EFI初始化模块和驱动执行环境通常被集成在一个只读存储器中。Pre-EFI初始化程序在系统开机的时候最先得到执行,它负责最初的CPU,主桥及存储器的初始化工作,紧接着载入EFI驱动执行环境(DXE)。当DXE被载入运行时,系统便具有了枚举并加载其他EFI驱动的能力。
在基于PCI架构的系统中,各PCI桥及PCI适配器的EFI驱动会被相继加载及初始化;这时,系统进而枚举并加载各桥接器及适配器后面的各种总线及设备驱动程序;
周而复始,直到最后一个设备的驱动程序被成功加载。正因如此,EFI驱动程序可以放置于系统的任何位置,只要能保证它可以按顺序被正确枚举。
比较EFI BIOS和Legacy BIOS
一个显著的区别就是EFI BIOS是用模块化,C语言风格的参数堆栈传递方式,动态链接的形式构建的系统,较Legacy BIOS而言更易于实现,容错和纠错特性更强,缩短了系统研发的时间。它运行于32位或64位模式,乃至未来增强的处理器模式下,突破传统16位代码的寻址能力,达到处理器的最大寻址。
它利用加载EFI驱动的形式,识别及 *** 作硬件,不同于BIOS利用挂载实模式中断的方式增加硬件功能。后者必须将一段类似于驱动的16位代码,放置在固定的0x000C0000至0x000DFFFF之间存储区中,运行这段代码的初始化部分,它将挂载实模式下约定的中断向量向其他程序提供服务。
例如,VGA图形及文本输出中断(INT 10h),磁盘存取中断服务(INT 13h)等等。由于这段存储空间有限(128KB),Legacy BIOS对于所需放置的驱动代码大小超过空间大小的情况无能为力。
另外,Legacy BIOS的硬件服务程序都以16位代码的形式存在,这就给运行于增强模式的 *** 作系统访问其服务造成了困难。因此Legacy BIOS提供的服务在现实中只能提供给 *** 作系统引导程序或MS-DOS类 *** 作系统使用
。而EFI系统下的驱动并不是由可以直接运行在CPU上的代码组成的,而是用EFI Byte Code(EBC)编写而成的。这是一组专用于EFI驱动的虚拟机器指令,必须在EFI驱动运行环境(Driver Execution Environment,或DXE)下被解释运行。
这就保证了充分的向下兼容性,打个比方说,一个带有EFI驱动的扩展设备,既可以将其安装在安腾处理器的系统中,也可以安装于支持EFI的新PC系统中,而它的EFI驱动不需要重新编写。这样就无需对系统升级带来的兼容性因素作任何考虑。
另外,由于EFI驱动开发简单,所有的PC部件提供商都可以参与,情形非常类似于现代 *** 作系统的开发模式,这个开发模式曾使Windows在短短的两三年时间内成为功能强大,性能优越的 *** 作系统。基于EFI的驱动模型可以使EFI系统接触到所有的硬件功能,在 *** 作 *** 作系统运行以前浏览万维网站不再是天方夜谭,甚至实现起来也非常简单。
这对基于传统BIOS的系统来说是件不可能的任务,在BIOS中添加几个简单的USB设备支持都曾使很多BIOS设计师痛苦万分,更何况除了添加对无数网络硬件的支持外,还得凭空构建一个16位模式下的TCP/IP协议栈。
1.使用设计模式设计模式是一个用来处理那些在软件中会重复出现的问题的解决方案。开发人员可以选择浪费宝贵的时间和预算从无到有地重新发明一个解决方案,也可以从他的解决方案工具箱中选择一个最适合解决这个问题的方案。在微出现之初,底层驱动已经很成熟了,那么,为什么不利用现有的成熟的解决方案呢?
驱动大致分属以下4个类别:Bit bang、轮询、中断驱动和直接存储器访问(DMA)。
Bit bang模式:
当没有内外设去执行功能的时候,或者当所有的内外设都已经被使用了,而此时又有一个新的请求,那么开发者就应该选择Bit bang设计模式伍差亮。Bit bang模式的解决方案很有效率,但通常需要大量的软件开销庆袜来确保其实施。Bit bang模式可以让开发者手动完成通信协议或外部行为。
轮询模式用于简单地监视一个轮询调度方式中的事件。轮询模式适用于非常简单的系统,但许多现代应用程序都需要中断。
中断可以让开发者在事件发生时进行处理,而不用等代码手动检查。腔宽
DMA(直接存储器访问)模式允许其它来处理数据传输的需求,而不需要驱动的干预。
2.了解实时行为
一个实时系统是否能满足实时需求取决于它的驱动程序。写入能力差的驱动是低效的,并可能使不知情的开发者放弃系统的性能。设计者需要考虑驱动的两个:阻塞和非阻塞。一个阻塞的驱动程序在其完成工作之前会阻止其他任何软件执行 *** 作。例如,一个USART驱动程序可以把一个字符装入传输缓冲区,然后一直等到接收到传输结束标志符才继续执行下一步 *** 作。
另一方面,非阻塞驱动则是一般利用中断来实现它的功能。中断的使用可以防止驱动程序在等待一个事件发生时拦截其他软件的执行 *** 作。USART的驱动程序可以将一个字符装入传输缓冲区然后等主程序发布下一个指令。传输结束标志符的设置会导致中断结束,让驱动进行下一步 *** 作。
无论哪种类型,为了保持实时性能,并防止系统中的故障,开发人员必须了解驱动的平均执行时间和最坏情况下的执行时间。一个完整的系统可能会因为一个潜在的风险而造成更大的安全问题。
3. 重用设计
在时间和预算都很紧张的情况下为什么还要再造轮子呢?在中,重用、性和可维护性都是驱动设计的关键要求。这里面的许多特征可以通过硬件抽象层的设计和使用来说明。
硬件抽象层(HAL)为开发人员提供一种方式来创建一个标准接口去控制微控制器的外设。抽象隐藏实现细节,取而代之的是提供了可视化功能,如 Usart_Init和Usart_Trmit。这个方法就是让任何USART、SPI、PWM或其他外设具备所有微控制器都支持的共同特点。 使用HAL隐藏底层、特定设备的细节,让应用程序开发人员专注于应用的需求,而不是关注底层的硬件是如何工作的。同时HAL提供了一个重用的容器。
设备与处理器之间的工作通常来说是异步,设备数据要传递给处理器通常来说有以下几种方法:轮询、等待和中断。
让CPU进行轮询等待总是不能让人满意,所以通常都采用中断的形式,让设备来通知CPU读取数据。
2.6内核的函数参数与现在的参数有所区别,这里都主要介绍概念,具体实现方法需要结合具体的内核版本。
request_irq函数申请中断,返回0表示申请成功,其他返回值表示申请失败,其具体参数解释如下:
flags 掩码可以使用以下几个:
快速和慢速处理例程 :现代内核中基本没有这两个概念了,使用SA_INTERRUPT位后,当中断被执行时,当前处理器的其他中断都将被禁止。通常不要使用SA_INTERRUPT标志位,除非自己明确知道会发生什么。
共享中断 :使用共享中断时,一方面要使用SA_SHIRQ位,另一个是request_irq中的dev_id必须是唯一的,不能为NULL。这个限制的原因是:内核为每个中断维护了一个共享处理例程的列表,例程中的dev_id各不相同,就像设备签名。如果dev_id相同,在卸载的迹镇桥时候引起混淆(卸载了另一个中断),当中断到达时会产生内核OOP消息。
共享中断需要满足以下一个条件才能申请成功:
当不需要使用该中断时,需要使用free_irq释放中断。
通常我们会在模块加载的时候申请安装中断处理例程,但书中建议:在设备第一次打开的时候安装,在设备最后一次关闭的时候卸载。
如果要查看中断触发的次数,可以查看 /proc/interrupts 和 /proc/stat。
书中讲述了如何自动检测中断号,在嵌入式开发中通常都是查看原理图和datasheet来直接确定。
自动检测的原理如下:驱动程序通知设备产生中断,然后查看哪些中断信号线被触发了。Linux提供了以下方法来进行探测:
探测工作耗时较长,建议在模块加载的时候做。
中断处理函数和普通函数其实差不多,唯一的区别是其运行的中断上下文中,在这个上下文中有以下注意事项:
中断处理函数典型用法如下:
中断处理函数的参数和返回值含义如下:
返回值主要有两个:IRQ_NONE和IRQ_HANDLED。
对于中断我们是可以进行开启和关闭的,Linux中提供了以下函数 *** 作单个中断姿猛的开关:
该方法可以在所有处理器上禁止或启用中断。
需要注意的是:
如果要关闭当前处理器上所有的中断,则可以调用以下方法:
local_irq_save 会将中断状态保持到flags中,然后禁用处理器上的中断;如果明确知道中断没有在其他地方被禁用,则可以使用local_irq_disable,否则请使用local_irq_save。
locat_irq_restore 会根据上面获取到flags来恢复中断;local_irq_enable 会无条件打开所有中断。
在中断中需要做一些工作,如果工作内容太多,必然导致中断处理所需的时间过长;而中断处理又要求能够尽快完成,这样才不会影响正常的系统调度,这两个之间就产生了矛盾旅蚂。
现在很多 *** 作系统将中断分为两个部分来处理上面的矛盾:顶半部和底半部。
顶半部就是我们用request_irq来注册的中断处理函数,这个函数要求能够尽快结束,同时在其中调度底半部,让底半部在之后来进行后续的耗时工作。
顶半部就不再说明了,就是上面的中断处理函数,只是要求能够尽快处理完成并返回,不要处理耗时工作。
底半部通常使用tasklet或者工作队列来实现。
tasklet的特点和注意事项:
工作队列的特点和注意事项:
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)