*** 作系统作业调度问题,请具体详细解答一下每一个作业的开始,完成,

 *** 作系统作业调度问题,请具体详细解答一下每一个作业的开始,完成,,第1张

给定n个作业的集合{J1,J2,…,Jn}。每个作业必须先由机器1处理,然后由机器2处理。作业Ji需要机器j的处理时间为tji。对于一个确定的作业调度,设Fji是作业i在机器j上完成处理的时间。所有作业在机器2上完成处理的时间和称为该作业调度的完成时间和。

批处理作业调度问题要求对于给定的n个作业,制定最佳作业调度方案,使其完成时间和达到最小。

例:设n=3,考虑以下实例:

这3个作业的6种可能的调度方案是1,2,3;1,3,2;2,1,3;2,3,1;3,1,2;3,2,1;它们所相应的完成时间和分别是19,18,20,21,19,19。易见,最佳调度方案是1,3,2,其完成时间和为18。

限界函数

批处理作扮厅业调度问题要从n个作业的所有排列中找出具有最小完成时间和的作业调度,所以如图,批处理作业调度问题的解空间是一颗排列树。

在作业调度问相应的排列空间树中,每一个节点E都对应于一个已安排的作业集。以该节点为根的子树中所含叶节点的完成时间和可表示为:

设|M|=r,且L是以节点E为根的子树中的叶节点,相应的作业调度为{pk,k=1,2,……n},其中pk是第k个安排的作业。如果从节点E到叶节点L的路上,每一个作业pk在机器1上完成处理后都能立即在机器2上简渗开始处理,即从pr+1开始,机器1没有空闲时间,则对于该叶节点L有:

注:(n-k+1)t1pk,因为是完成时间和,所以,后续的(n-k+1)个作业完成时间和都得算上t1pk。

如果不能做到上面这一点,则s1只会增加,从而有:。

类似地,如果从节点E开始到节点L的路上,从作业pr+1开始,机器2没有空闲时间,则:

同理拦缺脊可知,s2是的下界。由此得到在节点E处相应子树中叶节点完成时间和的下界是:

注意到如果选择Pk,使t1pk在k>=r+1时依非减序排列,S1则取得极小值。同理如果选择Pk使t2pk依非减序排列,则S2取得极小值。

这可以作为优先队列式分支限界

大数据的时代, 到处张嘴闭嘴唤握都是Hadoop, MapReduce, 不跟上时代怎么行? 可是对一个hadoop的新手, 写一个属于自己的MapReduce程序还是小有点难度的, 需要建立一个maven项目, 还要搞清楚和芦庆各种库的依赖, 再加上编译运行, 基本上头大两圈了吧。 这也使得很多只是想简单了解一下MapReduce的人望而却步。

本文会教你如何用最快最简单的方法编写和运行一个属于自己的MapReduce程序, let's go!

首先有两个前提:

1. 有一个已经可以运行的hadoop 集群(也可以是伪分布系统), 上面的hdfs和mapreduce工作正常 (这个真的哗轮是最基本的了, 不再累述, 不会的请参考 http://hadoop.apache.org/docs/current/)

2. 集群上安装了JDK (编译运行时会用到)

正式开始

1. 首先登入hadoop 集群里面的一个节点, 创建一个java源文件, 偷懒起见, 基本盗用官方的word count (因为本文的目的是教会你如何快编写和运行一个MapReduce程序, 而不是如何写好一个功能齐全的MapReduce程序)

内容如下:

import java.io.IOException

import java.util.StringTokenizer

import org.apache.hadoop.conf.Configuration

import org.apache.hadoop.fs.Path

import org.apache.hadoop.io.IntWritable

import org.apache.hadoop.io.Text

import org.apache.hadoop.mapreduce.Job

import org.apache.hadoop.mapreduce.Mapper

import org.apache.hadoop.mapreduce.Reducer

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat

import org.apache.hadoop.util.GenericOptionsParser

public class myword {

public static class TokenizerMapper

extends Mapper<Object, Text, Text, IntWritable>{

private final static IntWritable one = new IntWritable(1)

private Text word = new Text()

public void map(Object key, Text value, Context context

) throws IOException, InterruptedException {

StringTokenizer itr = new StringTokenizer(value.toString())

while (itr.hasMoreTokens()) {

word.set(itr.nextToken())

context.write(word, one)

}

}

}

public static class IntSumReducer

extends Reducer<Text,IntWritable,Text,IntWritable>{

private IntWritable result = new IntWritable()

public void reduce(Text key, Iterable<IntWritable>values,

Context context

) throws IOException, InterruptedException {

int sum = 0

for (IntWritable val : values) {

sum += val.get()

}

result.set(sum)

context.write(key, result)

}

}

public static void main(String[] args) throws Exception {

Configuration conf = new Configuration()

String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs()

if (otherArgs.length != 2) {

System.err.println('Usage: wordcount <in><out>')

System.exit(2)

}

Job job = new Job(conf, 'word count')

job.setJarByClass(myword.class)

job.setMapperClass(TokenizerMapper.class)

job.setCombinerClass(IntSumReducer.class)

job.setReducerClass(IntSumReducer.class)

job.setOutputKeyClass(Text.class)

job.setOutputValueClass(IntWritable.class)

FileInputFormat.addInputPath(job, new Path(otherArgs[0]))

FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]))

System.exit(job.waitForCompletion(true) ? 0 : 1)

}

}

与官方版本相比, 主要做了两处修改

1) 为了简单起见,去掉了开头的 package org.apache.hadoop.examples

2) 将类名从 WordCount 改为 myword, 以体现是我们自己的工作成果 :)

2. 拿到hadoop 运行的class path, 主要为编译所用

运行命令

hadoop classpath

保存打出的结果,本文用的hadoop 版本是Pivotal 公司的Pivotal hadoop, 例子:

/etc/gphd/hadoop/conf:/usr/lib/gphd/hadoop/lib/*:/usr/lib/gphd/hadoop/.//*:/usr/lib/gphd/hadoop-hdfs/./:/usr/lib/gphd/hadoop-hdfs/lib/*:/usr/lib/gphd/hadoop-hdfs/.//*:/usr/lib/gphd/hadoop-yarn/lib/*:/usr/lib/gphd/hadoop-yarn/.//*:/usr/lib/gphd/hadoop-mapreduce/lib/*:/usr/lib/gphd/hadoop-mapreduce/.//*::/etc/gphd/pxf/conf::/usr/lib/gphd/pxf/pxf-core.jar:/usr/lib/gphd/pxf/pxf-api.jar:/usr/lib/gphd/publicstage:/usr/lib/gphd/gfxd/lib/gemfirexd.jar::/usr/lib/gphd/zookeeper/zookeeper.jar:/usr/lib/gphd/hbase/lib/hbase-common.jar:/usr/lib/gphd/hbase/lib/hbase-protocol.jar:/usr/lib/gphd/hbase/lib/hbase-client.jar:/usr/lib/gphd/hbase/lib/hbase-thrift.jar:/usr/lib/gphd/hbase/lib/htrace-core-2.01.jar:/etc/gphd/hbase/conf::/usr/lib/gphd/hive/lib/hive-service.jar:/usr/lib/gphd/hive/lib/libthrift-0.9.0.jar:/usr/lib/gphd/hive/lib/hive-metastore.jar:/usr/lib/gphd/hive/lib/libfb303-0.9.0.jar:/usr/lib/gphd/hive/lib/hive-common.jar:/usr/lib/gphd/hive/lib/hive-exec.jar:/usr/lib/gphd/hive/lib/postgresql-jdbc.jar:/etc/gphd/hive/conf::/usr/lib/gphd/sm-plugins/*:

3. 编译

运行命令

javac -classpath xxx ./myword.java

xxx部分就是上一步里面取到的class path

运行完此命令后, 当前目录下会生成一些.class 文件, 例如:

myword.class myword$IntSumReducer.class myword$TokenizerMapper.class

4. 将class文件打包成.jar文件

运行命令

jar -cvf myword.jar ./*.class

至此, 目标jar 文件成功生成

5. 准备一些文本文件, 上传到hdfs, 以做word count的input

例子:

随意创建一些文本文件, 保存到mapred_test 文件夹

运行命令

hadoop fs -put ./mapred_test/

确保此文件夹成功上传到hdfs 当前用户根目录下

6. 运行我们的程序

运行命令

hadoop jar ./myword.jar myword mapred_test output

顺利的话, 此命令会正常进行, 一个MapReduce job 会开始工作, 输出的结果会保存在 hdfs 当前用户根目录下的output 文件夹里面。

至此大功告成!

如果还需要更多的功能, 我们可以修改前面的源文件以达到一个真正有用的MapReduce job。

但是原理大同小异, 练手的话, 基本够了。

一个抛砖引玉的简单例子, 欢迎板砖。

转载


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/12329096.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-24
下一篇 2023-05-24

发表评论

登录后才能评论

评论列表(0条)

保存