随机梯度下降算法

随机梯度下降算法,第1张

以线性回归为例:

预测函数为:

代价函数:

重复:{

}

当数据量过大时,梯度下降的算法会变得很慢,因为要对所有的数据进行求和。因为每次重复梯度下降都是所有数据全部求和,所以梯度下降算法又称之为 批量梯度下降(Batch Gradient Descent)

随机梯度下降在每一次迭代中,不用考虑全部的样本,只需要考虑一个训练样本。

针对一个样本,它的代价函数:

而针对所有样段棚衡本的代价函数可以看作是对每个样本代价函数的平均:

随机梯度下降算法如下:

第一步,先随机打乱训练集样本。

第二步,进行梯度下降:

重复 {

循环所有样本 for i=1,2,3,...,m {

}

}

一开始随机打乱数据是为了对样本集的访问是随机的,会让梯度下降的速度快一点。

该算法一次训练一个样本,对它的代价函数进行一小步梯度下降,修改参数 ,使得它对该样本的拟合会好一点;然后再对下一个样本进行运算,直到扫描完所有的训练样本,最后外部在迭代这个过程。

跟批量梯度下降算法不同的是,随机梯度下降不需要等到所有样本求和来得到梯度项,而是在对每个样本就可以求出梯度项,在对每个样本扫描的过程中就已经在优化参数了。

在梯度下降过程中,批量梯度下降的过程趋向于一条直线,直接握做收敛到全局最小值;而随机梯度下降不太可能收敛到全局最小值,而是随机地在其周围震荡,但通常会很接近最小值。

随机梯度下降通常需要经过1-10次外部循环才能接近全局最小值。

在批量梯度下降中,要判断是否收敛,需要在每一次迭代算法后计算 的值,根据值的变化来判断收敛。

在执行随机梯度下降时,不需要计算所有的样本的代价函数,只用在对某个样本进行梯度下降前计算该样本的代价函数 ,为了判断是否收敛,可以计算多次迭代后 的平均值,例如1000次和简迭代,在每次更新 前,计算最后1000次的的cost的平均值。

选择每隔多少次计算成本函数对梯度下降的过程也有影响:

上图中蓝色曲线是每1000次迭代,红色的是每隔5000次迭代。

因为随机梯度下降时会出现震荡,当迭代次数少时发现下降的曲线起伏很多,而迭代次数变大时,曲线就会变得平滑许多。缺点是每隔5000个计算,会增加计算成本。

增加迭代次数可以判断算法是否正确:

上图蓝色的是1000个迭代次数,通过这条曲线,不能很好的判断成本函数是否在下降,这时就需要添加迭代次数,当增加到5000次,则可以通过平滑的曲线判断,当下滑曲线是红色的时,说明算法是有效的,代价函数值在下降;当是紫色的曲线时,可以看到是一个平坦的线,这时判断算法可能出现问题了。

在随机梯度下降中,学习率 也会影响算法,当学习率减小时,下降曲线的震荡就会变小,而且会收敛到一个更好的解:

当看到曲线是上升的时候,可以尝试减小学习率看看效果。

在随机梯度下降中,如果想要收敛到全剧最小值,需要随着时间的变化减小学习率 的值:

学习率等于一个常数除以迭代次数加另一个常数,随着迭代次数增大,学习率会减小;但这会造成常数1和常数2的选择问题。

第一步,测量系统当前的像质评价函数值;

第二步,对控制参量 施加扰动 ,随机生成扰动向量,各扰动向量相互独立且同为伯努利分布;

第三步,保持控制参量的扰动状态,测量此时系统的像质评价函隐旅数值;

第四步,计算像质评价函数值的改变量,并按迭代灶握凳公式对控制参量的取值进行修正;下图为随机并行梯度下降算法的迭代公式。

在进行梯度估计时,可使用双边扰动来提高梯度估计的精度。也就是分别对控制电压参量 施加一次正向扰动和负向扰动,并测量两次扰动后的像质评价函数值的改变量作为性能指标皮唯梯度估计。在实际应用中,如使目标函数向极大方向优化,μ取负值;反之,μ取正。算法流程图如下图所示


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/12341579.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-24
下一篇 2023-05-24

发表评论

登录后才能评论

评论列表(0条)

保存