#define MAX_VERTEX_NUM 100 //最大顶点数
#define MAX_INT 10000 //无穷大
typedef int AdjType
typedef struct{
int pi[MAX_VERTEX_NUM]//存放v到vi的一条最短路径
int end
}PathType
typedef char VType//设顶点为字符类型
typedef struct{
VType V[MAX_VERTEX_NUM]//顶点存储空间
AdjType A[MAX_VERTEX_NUM][MAX_VERTEX_NUM]//邻接矩阵
}MGraph//邻接矩阵表示的图
//Floyd算法
//求网G(用邻接矩阵表示)中任意两点间最短路径
//D[][]是最短路径长度矩阵,path[][]最短路径标志矩阵
void Floyd(MGraph * G,int path[][MAX_VERTEX_NUM],int D[][MAX_VERTEX_NUM],int n){
int i,j,k
for(i=0i<ni++){//初始化
for(j=0j<nj++){
if(G->A[i][j]<MAX_INT){
path[i][j]=j
}else{
path[i][j]=-1
}
D[i][j]=G->A[i][j]
}
}
for(k=0k<nk++){//进行n次试探
for(i=0i<ni++){
for(j=0j<nj++){
if(D[i][j]>D[i][k]+D[k][j]){
D[i][j]=D[i][k]+D[k][j]//取小者
path[i][j]=path[i][k]//改Vi的后继
}
}
}
}
}
int main(){
int i,j,k,v=0,n=6//v为起点,n为顶点个数
MGraph G
int path[MAX_VERTEX_NUM][MAX_VERTEX_NUM]//v到各顶点的最短路径向量
int D[MAX_VERTEX_NUM][MAX_VERTEX_NUM]//v到各顶点最短路径长度向量
//初始化和亏
AdjType a[MAX_VERTEX_NUM][MAX_VERTEX_NUM]={
{0,12,18,MAX_INT,17,MAX_INT},
{12,0,10,3,MAX_INT,5},
{18,10,0,MAX_INT,21,11},
{MAX_INT,3,MAX_INT,0,MAX_INT,8},
{17,MAX_INT,21,MAX_INT,0,16},
{MAX_INT,5,11,8,16,0}
}
for(i=0i<ni++){
for(j=0j<nj++){
G.A[i][j]=a[i][j]
}
}
Floyd(&G,path,D,6)
for(i=0i<ni++){//输出每答棚卖对顶点间最短路径长度及最短路径
for(j=0j<nj++){
printf("V%d到V%d的最短长度:",i,j)
printf("%d\t",D[i][j])//输出Vi到Vj的最短路径长度
k=path[i][j]//取路径上Vi的后续Vk
if(k==-1){
printf("There is no path between V%d and V%d\n"清逗,i,j)//路径不存在
}else{
printf("最短路径为:")
printf("(V%d",i)//输出Vi的序号i
while(k!=j){//k不等于路径终点j时
printf(",V%d",k)//输出k
k=path[k][j]//求路径上下一顶点序号
}
printf(",V%d)\n",j)//输出路径终点序号
}
printf("\n")
}
}
system("pause")
return 0
}
function [center, U, obj_fcn] = FCMClust(data, cluster_n, options)% FCMClust.m 采用模糊C均值对数据集data聚为cluster_n类
%
% 用法:
% 1. [center,U,obj_fcn] = FCMClust(Data,N_cluster,options)
% 2. [center,U,obj_fcn] = FCMClust(Data,N_cluster)
%
% 输入:宏握
% data---- nxm矩阵,表示n个样本,每个样本具有m的维特征值
% N_cluster ---- 标量,表示聚合中心数目,即类别数
% options ---- 4x1矩阵,其中
% options(1): 隶属度矩阵U的指数,>1 (缺省值: 2.0)
% options(2): 最大迭代次数 (缺省值: 100)
% options(3): 隶属度最小变化量,迭代终止条件 (缺省值: 1e-5)
% options(4): 每次迭代是否输出信息标志(缺省值: 1)
% 输出:
% center ---- 聚类中心
% U ---- 隶属度矩阵
% obj_fcn ---- 目标函数值
% Example:
% data = rand(100,2)
% [center,U,obj_fcn] = FCMClust(data,2)
% plot(data(:,1), data(:,2),'o')
% hold on
% maxU = max(U)
% index1 = find(U(1,:) == maxU)
% index2 = find(U(2,:) == maxU)
% line(data(index1,1),data(index1,2),'marker','*','color'高山,'g')
% line(data(index2,1),data(index2,2),'marker','*','color','r')
% plot([center([1 2],1)],[center([1 2],2)],'*','color','k')
% hold off
if nargin ~= 2 &nargin ~= 3,%判断输入参数个数只能是2个或3个
error('Too many or too few input arguments!')
end
data_n = size(data, 1)% 求出data的第一维(rows)数,即样本个数
in_n = size(data, 2) % 求出data的第二维(columns)数,即特征值长度
% 默认 *** 作参数
default_options = [2% 隶属度矩阵U的指数
100 % 最大迭代次数
1e-5 % 隶蔽念庆属度最小变化量,迭代终止条件
1]% 每次迭代是否输出信息标志
if nargin == 2,
options = default_options
else %分析有options做参数时候的情况
% 如果输入参数个数是二那么就调用默认的option
if length(options) <4, %如果用户给的opition数少于4个那么其他用默认值
tmp = default_options
tmp(1:length(options)) = options
options = tmp
end
% 返回options中是数的值为0(如NaN),不是数时为1
nan_index = find(isnan(options)==1)
%将denfault_options中对应位置的参数赋值给options中不是数的位置.
options(nan_index) = default_options(nan_index)
if options(1) <= 1, %如果模糊矩阵的指数小于等于1
error('The exponent should be greater than 1!')
end
end
%将options 中的分量分别赋值给四个变量
expo = options(1) % 隶属度矩阵U的指数
max_iter = options(2) % 最大迭代次数
min_impro = options(3) % 隶属度最小变化量,迭代终止条件
display = options(4) % 每次迭代是否输出信息标志
obj_fcn = zeros(max_iter, 1)% 初始化输出参数obj_fcn
U = initfcm(cluster_n, data_n)% 初始化模糊分配矩阵,使U满足列上相加为1,
% Main loop 主要循环
for i = 1:max_iter,
%在第k步循环中改变聚类中心ceneter,和分配函数U的隶属度值
[U, center, obj_fcn(i)] = stepfcm(data, U, cluster_n, expo)
if display,
fprintf('FCM:Iteration count = %d, obj. fcn = %f\n', i, obj_fcn(i))
end
% 终止条件判别
if i >1,
if abs(obj_fcn(i) - obj_fcn(i-1)) <min_impro,
break
end,
end
end
iter_n = i% 实际迭代次数
obj_fcn(iter_n+1:max_iter) = []
% 子函数
function U = initfcm(cluster_n, data_n)
% 初始化fcm的隶属度函数矩阵
% 输入:
% cluster_n ---- 聚类中心个数
% data_n ---- 样本点数
% 输出:
% U ---- 初始化的隶属度矩阵
U = rand(cluster_n, data_n)
col_sum = sum(U)
U = U./col_sum(ones(cluster_n, 1), :)
% 子函数
function [U_new, center, obj_fcn] = stepfcm(data, U, cluster_n, expo)
% 模糊C均值聚类时迭代的一步
% 输入:
% data---- nxm矩阵,表示n个样本,每个样本具有m的维特征值
% U ---- 隶属度矩阵
% cluster_n ---- 标量,表示聚合中心数目,即类别数
% expo---- 隶属度矩阵U的指数
% 输出:
% U_new ---- 迭代计算出的新的隶属度矩阵
% center ---- 迭代计算出的新的聚类中心
% obj_fcn ---- 目标函数值
mf = U.^expo % 隶属度矩阵进行指数运算结果
center = mf*data./((ones(size(data, 2), 1)*sum(mf'))')% 新聚类中心(5.4)式
dist = distfcm(center, data) % 计算距离矩阵
obj_fcn = sum(sum((dist.^2).*mf)) % 计算目标函数值 (5.1)式
tmp = dist.^(-2/(expo-1))
U_new = tmp./(ones(cluster_n, 1)*sum(tmp)) % 计算新的隶属度矩阵 (5.3)式
% 子函数
function out = distfcm(center, data)
% 计算样本点距离聚类中心的距离
% 输入:
% center ---- 聚类中心
% data ---- 样本点
% 输出:
% out---- 距离
out = zeros(size(center, 1), size(data, 1))
for k = 1:size(center, 1), % 对每一个聚类中心
% 每一次循环求得所有样本点到一个聚类中心的距离
out(k, :) = sqrt(sum(((data-ones(size(data,1),1)*center(k,:)).^2)',1))
end
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)