网络爬虫也叫做网络机器人,可以代替人们自动地在互联网中进行数据信息的采集与整理。
可以利用爬虫技术,自动地从互联网中获取感兴趣的数据内容,并将这些数据内慧首容爬取回来,作为自己的数据源,从而进行更深层前亮数次的数据分析,并获得更多有价值键饥的信息。
目录:1. PC网页爬虫
2. H5网页爬虫
3. 微信小程序爬虫
4. 手机APP爬虫
爬取超级猩猩的课表,该平台仅提供了微信小程序这一个途径,前面两种针对html网页的爬取方式都不再适用。
采用抓包分析是我们制定方案的第一步。
我用的Mac电脑,fiddler只有一个简化版,所以另找了Charles这个类似的软件。启动Charles的代理,在手机WIFI中设置好对应的代理就可以开抓了。但是,抓到的https包的内容都是乱码,咋办?
Charles中提供了ssl证书,在手机端安装证书即可。推荐使用iPhone,直接安装描述文件即可。Android手机必须使用系统版本在7.0以下的才行,7.0以上还需要反编译什么的,太麻烦了。
很容易的定位到了超级猩猩微信小程序载入课表的后台接口。拿这个URL在浏览器里访问试试,直接返回了json结果!超级猩猩很友好!
提取对应的URL,放到浏览器中验证,也可以支持返回json包,剩下就是分析一下这个json的数据结构,按照需要的方式导出了。
直接通过接口的爬取效率非常高,几秒钟就拉取了全国各个门店的排课,相当舒心。(下图的录屏没有进行加速)
最后一个挑战就是对只有Android/iOS的APP端应用数据的爬取。请看下一章
请点击: <下一页>
经过前面四章的学习,我们已经可以使用Requests库、Beautiful Soup库和Re库,编写基本的Python爬虫程序了。那么这一章就来学习一个专业的网络爬虫框架--Scrapy。没错,是框架,而不是像前面介绍的函数功能库。
Scrapy是一个快速、功能强大的网络爬虫框架。
可能大家还不太了解什么是框架,爬虫框架其实是实现爬虫功能的一个软件结构和功能组件的集合。
简而言之, Scrapy就是一个爬虫程序的半成品,可以帮助用户实现专业的网络爬虫。
使用Scrapy框架,不需要你编写大量的代码,Scrapy已经把大部分工作都做好了,允许你调用几句代码便自动生成爬虫程序,可以节省大量的时间。
当然,框架所生成的代码基本是一致的,如果遇到一些特定的爬虫任务时,就不如自己使用Requests库搭建来的方便了。
PyCharm安装
测试安装:
出现框架版本说明安装成功。
掌握Scrapy爬虫框架的结构是使用好Scrapy的重中之重!
先上图:
整个结构可以简单地概括为: “5+2”结构和3条数据流
5个主要模块(及功能):
(1)控制所有模块之间的数据流。
(2)可以根据条件触发事件。
(1)根据请求下载网页。
(1)对所有爬取请求进行调度管理。
(1)解析DOWNLOADER返回的响应--response。
(2)产生爬取项--scraped item。
(3)产生额外的爬取请求--request。
(1)以流水线方式处理SPIDER产生的爬取项。
(2)由一组 *** 作顺序组成,类似流水线,每个 *** 作是一个ITEM PIPELINES类型。
(3)清理、检查和查重爬取项中的HTML数据并将数据存储到数据库中。
2个中间键:
(1)对Engine、Scheduler、Downloader之间进行用户可配置的控制。
(2)修改、丢弃、新增请求或响应。
(1)对请求和爬取项进行再处理。
(2)修改、丢弃、新增请求或爬取项。
3条数据流:
(1):图中数字 1-2
1:Engine从Spider处获得爬取请求--request。
2:Engine将爬取请求转发给Scheduler,用于调度。
(2):图中数字 3-4-5-6
3:Engine从Scheduler处获得下一个要爬取的请求。
4:Engine将爬取请求通过中间件发送给Downloader。
5:爬取网页后,Downloader形成响应--response,通过中间件发送给Engine。
6:Engine将收到的响应通过中间件发送给耐如Spider处理。
(3):图中数字 7-8-9
7:Spider处理响应后产生爬取项--scraped item。
8:Engine将爬取项发送给Item Pipelines。
9:Engine将爬取请求发送给Scheduler。
任务处理流程:从Spider的初始爬取请求开始爬取,Engine控制各模块数据流,不间断从Scheduler处获得爬取请求,直至请求为空,最后到Item Pipelines存储数据结束。
作为用户,只需配置好Scrapy框架的Spider和Item Pipelines,也就是数据流的入口与出口,便可完成一个爬虫程序的搭建激含。Scrapy提供了简单的爬虫命令语句,帮助用户一键配置剩余文件,那我们便来看看有哪些好用的命令吧。
Scrapy采用命令行创建和运行爬虫
PyCharm打开Terminal,启动Scrapy:
Scrapy基本命令行格式:
具体常用命令如下:
下面用一个例子来学习一下命令的使用:
1.建立一个Scrapy爬虫工程,在已启动的Scrapy中继续输入:
执行该命令,系统会在PyCharm的工程文件中自动创建一个工程,命明亩笑名为pythonDemo。
2.产生一个Scrapy爬虫,以教育部网站为例http://www.moe.gov.cn:
命令生成了一个名为demo的spider,并在Spiders目录下生成文件demo.py。
命令仅用于生成demo.py文件,该文件也可以手动生成。
观察一下demo.py文件:
3.配置产生的spider爬虫,也就是demo.py文件:
4.运行爬虫,爬取网页:
如果爬取成功,会发现在pythonDemo下多了一个t20210816_551472.html的文件,我们所爬取的网页内容都已经写入该文件了。
以上就是Scrapy框架的简单使用了。
Request对象表示一个HTTP请求,由Spider生成,由Downloader执行。
Response对象表示一个HTTP响应,由Downloader生成,有Spider处理。
Item对象表示一个从HTML页面中提取的信息内容,由Spider生成,由Item Pipelines处理。Item类似于字典类型,可以按照字典类型来 *** 作。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)