K-MEANS算法的处理流程

K-MEANS算法的处理流程,第1张

(1) 从 n个数据对象任意选择 k 个对象作为初始聚类中心;

(2) 根据每个聚类对象的均值(中心对象),计算每个对象与这些中心对象的距离;并罩慧亩根据最小距离重新对相应对象进行划分;

(3) 重新计算每个(有变化)聚类的均值(中心对象);

(4) 计算标准测度函数,当满足一定条件,如函数收敛时,则算法终止;如果条件不满足则回到步骤(2)。 k-means 算法接受输入量 k ;然后将n个数据对象划分为 k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。聚类相似度是利用各聚类中对象的均值所获得一个“中心对象”(引力中心)来进行计算的。

k-means 算法的工作过程说明如下:首先从n个数据对象任意选择 k 个对象作为初始聚类中心;而对于所剩下其它对象,则根据它们与这些聚类中心的相似度(距离),分别将它们分配给与其最相似的(聚类中心所代表的)聚类;然后再计算每个所获新聚类的聚类中心(该聚类中所有对象的均值);不断重复这一过程直到标准测度函数开始收敛为止。一般都采用均方差作为标准测度函数. k个聚类具有以下特点:各聚类本身尽可能的紧凑,而各聚类之间尽可能的分开。

算法的时间复杂度上物森界为O(n*k*t), 其中t是迭代次数。

k-means算法是一种基于样本间相似性度量的间接聚类方法,属于非监督学习方法。此算法以k为参数,把n 个对象分为k个簇,以使簇内具有较高的相似度,而且簇间的相似度较低。相似度的计算根据一个簇中对象的平均值(被看作簇的重心)来进行。此算法首先随机选择k个对象,每个对象代表一个聚类的质心。对于其余的每一个对象,根据该对象与各聚类质心之间的距离,把它分配到与之最相似的聚类中。然后,计算每碧唯个聚类的新质心。重复上述过程,直到准则函数收敛。k-means算法是一种较典型的逐点修改迭代的动态聚类算法,其要点是以误差平方和为准则函数。逐点修改类中心:一个象元样本按某一原则,归属于某一组类后,就要重新计算这个组类的均值,并且以新的均值作为凝聚中心点进行下一次象元素聚类;逐批修改类中心:在全部象元样本按某一组的类中心分类之后,再计算修改各类的均值,作为下一次分类的凝聚中心点。

在聚类分析中,K-均值聚类算法(k-means algorithm)是无监督分类中的一种基本方法,其也称为C-均值算法,其基本思想是:通过迭代的方法,逐次更新各聚类中心的值,直至得到最好的聚类结果。假设要把绝渗友样本集分为c个类别,算法如下:(1)适当选择c个类的初始中心;(2)在第k次迭代中,对任意一个样本,求其到c个中心的距离,将该样本归到距离最短的中心所在的类,(3)利用均值等方法更新该类的中心值;(4)并槐对于所有的c个聚类中心,如果利用(2)(3)的迭代法更新后,值保持不变,则迭代结束,否则继续迭代。下面介绍作者编写的一个分两类的程序,可以把其作为函数调用。%% function [samp1,samp2]=kmeans(samp)作为调用喊丛函数时去掉注释符samp=[11.1506 6.7222 2.3139 5.9018 11.0827 5.7459 13.2174 13.8243 4.8005 0.9370 12.3576]%样本集[l0 l]=size(samp)%%利用均值把样本分为两类,再将每类的均值作为聚类中心th0=mean(samp)n1=0n2=0c1=0.0c1=double(c1)c2=c1for i=1:lif samp(i)<th0c1=c1+samp(i)n1=n1+1elsec2=c2+samp(i)n2=n2+1endendc1=c1/n1c2=c2/n2%初始聚类中心t=0cl1=c1cl2=c2c11=c1c22=c2%聚类中心while t==0samp1=zeros(1,l)samp2=samp1n1=1n2=1for i=1:lif abs(samp(i)-c11)<abs(samp(i)-c22)samp1(n1)=samp(i)cl1=cl1+samp(i)n1=n1+1c11=cl1/n1elsesamp2(n2)=samp(i)cl2=cl2+samp(i)n2=n2+1c22=cl2/n2endendif c11==c1 &&c22==c2t=1endcl1=c11cl2=c22c1=c11c2=c22end %samp1,samp2为聚类的结果。初始中心值这里采用均值的办法,也可以根据问题的性质,用经验的方法来确定,或者将样本集随机分成c类,计算每类的均值。k-均值算法需要事先知道分类的数量,这是其不足之处。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/12407266.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-25
下一篇 2023-05-25

发表评论

登录后才能评论

评论列表(0条)

保存