R语言的一些矩阵运算

R语言的一些矩阵运算,第1张

摘自: https://www.cnblogs.com/yupeter007/p/5325575.html

矩阵的存储默认是按列进行存储的

matrix (data = NA, nrow = 1, ncol = 1, byrow =FALSE, dimnames = NULL)

创建一个c(1:12)的三行四列的矩阵,

colnames<-c("c1","c2","c3","c4")

rownames<-c("r1","r2","r3")

x<-matrix(1:12,nrow=3,ncol=4,byrow=TRUE,dimnames=list(rownames,colnames))

x

c1 c2 c3 c4

r1 1 2 3 4

r2 5 6 7 8

r3 9 10 11 12

y<-t(x)

若是针对的是一个向量

y<-(1:10)

装置后得到的是行向量

[1] "matrix"

若要的到列向量则

matrix(rnorm(100),nrow=10)

matrix(2,ncol=n,nrow=m)

4.1创建对角矩阵

diag(x,ncol=n,nrow=m)

若x为矩阵 则diag(x)将会提取矩阵x的对角,则返回的是向量值

返回的是以矩阵对角的对角矩阵

[,1] [,2] [,3]

[1,] 1 0 0

[2,] 0 1 0

[3,] 0 0 1

n<-ncol

m<-nrow

为矩阵的行和列命名

rownames(x)<-c()

colnames(x)<c()

A为m×n矩阵,c>0,在R中迹陆求cA可用符号:“*”,例如:

A为m×n矩阵,B为n×k矩阵,在R中求AB可用符号:“%*%”,例如:

对矩阵求逆

方法一:直接用solve(x)

方法二:加载包MASS

library(MASS)

ginv(matrix)

向量的内积

x<-c(1:5)

y<-c(3:7)

向量的外积

向量、矩阵的外积(叉积)

设x和y是n维向量,则x%o%y表示x与y作外积.

, , 2, 1

[,1] [,2] [,3] [,4]

[1,]28 14 20

[2,]4 10 16 22

[3,]6 12 18 24

, , 1, 2

[,1] [,2] [,3] [,4]

[1,]3 12 21 30

[2,]6 15 24 33

[3,]9 18 27 36

, , 2, 2

[,1] [,2] [,3] [,4]

[1,]4 16 28 40

[2,]8 20 32 44

[3,] 12 24 36 48

outer()是更为强大的外积运算函数,outer(x,y)计算向量x与y的外积,它等价于x %o%y

函数。outer()的一般调用格式为

outer(x,y,fun=”*”)

det(x),求姿州腊矩阵迹滑x的行列式值

qr(x)$rank求x矩阵的秩

解线性方程组和求矩阵的逆矩阵

1、先在R中创建简单的矩阵,取名为my_matrix。带备

2、对于tapply函数我们调用R本身自带的数据airquality,现在我们计算按照Month来分组,每一个Month中Solar.R的均值竖行宴。

3、上图中Month等于5和8时,Solar.R的均值为NA,这说明在原数据中存在NA的情况。

4、再讲讲矩阵与矩余银阵之间的运算。

5、矩阵相乘需要使用%*%符号。

注意事项:

R是属于GNU系统的一个自由、免费、源代码开放的软件,它是一个用于统计计算和统计制图的优秀工具。

R语言三个矩阵求和计算方法:创建一个用户定义的函数,如果输入x和n,该函数计算从1到n中所有x的倍数之和,sum函数求和,向量求和得到一个数,矩阵求和得到一个向量,把每行求和以后,再进行列求和就是最后的求和。

按行求和,即每一行元素的加和,用rowSums() 注意S大写,后有s。关于元素判断和类型转换,因为numeric(数字)类型在实际 *** 作中使用频率较高,以该类型进行总结。一般用as.numeric(), 可以将非numeric的数据转换为numeric,便于计算。

所有R的函数

和数据集祥春是保存在程序包里面的搜型。只有当一个包被载入时,它的内容才可以被世宴猜访问。一些常用、基本的程序包已经被收入了标准安装文件中,随着新的统计分析方法的出现,标准安装文件中所包含的程序包也随着版本的更新而不断变化。

在另外版安装文件中,已经包含的程序包有:base—R的基础模块、mle—极大似然估计模块、ts—时间序列分析模块、mva—多元统计分析模块、survival—生存分析模块等等。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/12420361.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-25
下一篇 2023-05-25

发表评论

登录后才能评论

评论列表(0条)

保存