消息传递界面/接口(英语:中知Message Passing Interface,缩写MPI)是一个并行计算的应用程序接口(API),常在超级电脑、电脑簇等非共享内存环境程序设计[2]。
下面是我在使用他们的过程中,对这两种API优缺点的认识。
OpenMP的优点:
- OpenMP相对于MPI而言更容易使用。
- OpenMp对原串行代码改动较小,可以保护代码原貌。
- 代码更容易理解和维护
- 允许渐进式并行化
OpenMP的缺点 :
- 所有线程共享内存空间,硬件制约较大
- 目前主要针对循环并行化
MPI的优点:
- 无论硬件是否共享内存空间,都可以使用。(但是线程间不共享内存空间)
- 与OpenMP相比,可以处理规模更卖念消大的问题
- 每个线程有自己的内存和变量,这样不用担心
MPI的缺点:
- 算法上经常有较大改动(建立communication等)
- 较难使用
- 性能上会受到通信网络的影响
Spark已经取代Hadoop成为最活跃的开源大数据项目,但是,在选择大数据框架时,企业不能因此就厚此薄彼近日,著名大数据专家Bernard Marr在一篇文章中分析了Spark和 Hadoop 的异同
Hadoop和Spark均是大数据框架,都提供了一些执行常见大数据任务的工具,但确切地说,它们所执行的任务并不相同,彼此也并不排斥
虽然在特定的情况下,Spark据称要比Hadoop快100倍,但它本身没有一个分布式存储系统
而分布式存储是如今许多大数据项目的基础,它可以将 PB 级的数据集存储在几乎无限数量的普通计算机的硬盘上,并提供了良好的可扩展性,只需要随着数据集的增大增加硬盘
因此,Spark需要一个第三方的分布式存储,也正是因为这个原因,许多大数据项目都将Spark安装在Hadoop之上,这样,Spark的高级分析应用程序就可以使用存储在HDFS中的数据了
与Hadoop相比,Spark真正的优势在于速度,Spark的大部分 *** 作都是在内存中,而Hadoop的MapReduce系统会在每次 *** 作之后将所有数据写回到物理存储介质上,这是为了确保在出现问题时能够完全恢复,但Spark的d性分布式数据存储也能实现这一点
另外,在高级数据处理(如实时流处理、机敏兆器学习)方面,Spark的功能要胜过Hadoop
在Bernard看来,这一点连同其速度优势是Spark越来越受欢迎的真正原因
实时处理意味着可以在数据捕获的瞬间将其提交给分析型应用程序,并立即获得反馈
在各种各样的大数据应用程序中,这种处理的用途越来越多,比如,零售商使用的推荐引擎、制造业中的工业机械性能监控
Spark平台的速度和流数据处理能力也非常适合机掘激器学习算法,这类算法可以自我学习和改进,直到找到问题的理想解决方案
这种技术是最先进制造系统(如预测零件何时损坏)和无人驾驶汽车的核心
Spark有自己的机器学习库MLib,而Hadoop系统则需要借助第三方机器学习库,如Apache Mahout
实际上,虽然Spark和Hadoop存在一些功能上的重叠,但它们都不是商业产品,并不存在真正的竞争关系,而通过为这类免费系统提供技术支判拿袜持赢利的公司往往同时提供两种服务
例如,Cloudera 就既提供 Spark服务也提供 Hadoop服务,并会根据客户的需要提供最合适的建议
Bernard认为,虽然Spark发展迅速,但它尚处于起步阶段,安全和技术支持基础设施方还不发达,在他看来,Spark在开源社区活跃度的上升,表明企业用户正在寻找已存储数据的创新用法
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)