用MFC做出来的图像处理.exe与photos的那些功能一样,二者有什么区别,我们干嘛要编程实现这些功能呢?谢谢

用MFC做出来的图像处理.exe与photos的那些功能一样,二者有什么区别,我们干嘛要编程实现这些功能呢?谢谢,第1张

photoshop大部分图像处理的功能其实都是一些基本的图像处理乎戚算法.如果你自己编程实现这些功能,实际上也握档只有学习的意义,除非你的应用有特殊的要求,需要实现更多更复杂的功能,比如目标识别,运动目标跟踪等等.

如果进行图像处理的学习,或是从事这方面的工作,自己动动手实现这些功能,学习下基本的图像算法,还是段顷乱很有帮助的

在这篇文章中,我们将介绍如何使用通过 MultiTracker 类实现的 OpenCV 的多对象跟踪 API。我们将共享C++ 和 Python 代码。

大多数计算机视觉和机器学习的初学者都学习对象检测。如果您是初学者,您可能会想为什么我们需要对象跟踪。我们不能只检测每一帧中的对象吗?

让我们来探究一下跟踪是有用的几个原因。

首先,当在视频帧中检测到多个对象(例如人)时,跟踪有助于跨帧建立对象的身份。

其次,在某些情况下,对象检测可能会失败,但仍可能跟踪对象,因为跟踪考虑了对象在前一帧中的位置和外观。

第三,一些跟踪算法非常快,因为它们做的是局部搜索,而不是全局搜索。因此,我们可以通过每n帧进行目标检测,并在中间帧中跟踪目标,从而为我们的系统获得很高的帧率。

那么,为什么不在第一次检测后无限期地跟踪对象呢?跟踪算法有时可能会丢失它正在跟踪的对象。例如,当对象的运动太大时,跟踪算法可能跟不上。许多现实世界的应用程序同时使用检测和跟踪。

在本教程中,我们只关注跟踪部分。我们想要跟踪的对象将通过拖动它们周围的包围框来指定。

OpenCV 中的 MultiTracker 类提供了多目标跟踪的实现。它是一个简单的实现,因为它独立处理跟踪对象,而不对跟踪对象进行任何优化。

让我们逐步查看代码,了解如何使用 OpenCV 的多目标跟踪 API。

2.1 第 1 步:创建单一对象跟踪器

多目标跟踪器只是单目标跟踪器的集合。我们首先定义一个函数,该函数接受一个跟踪器类型作为输入,并创建一个跟踪器对象。OpenCV有8种不同的跟踪器类型:BOOSTING, MIL, KCF,TLD, MEDIANFLOW, GOTURN, MOSSE, CSRT。

如果您想使用 GOTURN 跟踪器,请务必阅读这篇文章并下载 caffe 模型。

在下面的代码中,给定跟踪器类的名称,我们返回跟踪器对象。这将在稍后用于多目标跟踪器。

Python

C++

2.2 第 2 步:读取视频的第一帧

多目标跟踪器需要两个输入

给定这些信息,跟踪器在所有后续帧中跟踪这些指定对象的位置。 在下面的代码中,我们首先使用 VideoCapture 类加载视频并读取第一帧。这将在稍后用于初始化 MultiTracker。

Python

C++

2.3 第 3 步:在第一帧中定位对象

接下来,我们需要在第一帧中定位我们想要跟踪的对象。该位置只是一个边界框。 OpenCV 提供了一个名为 selectROI 的函数,该函数会d出一个 GUI 来选择边界框(也称为感兴趣区域 (ROI))。 在 C++ 版本中,selectROI 允许您获取多个边界框,但在 Python 版本中,它只返回一个边界框。所以,在 Python 版本中,我们需要一个循环来获取多个边界框。 对于每个对象,我们还选择一种随机颜色来显示边界框。 代码如下所示。

Python

C++

getRandomColors 函数相当简贺并单

2.4 第 3 步:初始化 MultiTracker

到目前为止,我们已经读取了第一帧并获得了对象周围的边界框。这就是我们初始化多目标跟踪器所需的所有信息。

我们首先创建一个 MultiTracker 对象,并向其中添加与边界框一样多的单个对象跟踪器。在此示例中,我们使用 CSRT 单对象跟踪器,但您可以通过将下面的 trackerType 变量更改为本文开头提到的 8 个跟踪器之一来尝试其他跟踪器类型。 CSRT 跟踪器不是最快的,但在我们尝试的许多情况禅雀迹下它产生了最好的结果。

您还可以使用包裹在同岁运一个 MultiTracker 中的不同跟踪器,但当然,这没什么意义。

MultiTracker 类只是这些单个对象跟踪器的包装器。正如我们从上一篇文章中知道的那样,单个对象跟踪器是使用第一帧初始化的,并且边界框指示我们想要跟踪的对象的位置。 MultiTracker 将此信息传递给它在内部包装的单个对象跟踪器。

Python

C++

2.5 第 4 步:更新 MultiTracker 并显示结果

最后,我们的 MultiTracker 已准备就绪,我们可以在新帧中跟踪多个对象。我们使用 MultiTracker 类的 update 方法来定位新框架中的对象。每个跟踪对象的每个边界框都使用不同的颜色绘制。

Python

C++

C++

Python


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/12423054.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-25
下一篇 2023-05-25

发表评论

登录后才能评论

评论列表(0条)

保存